Skip to main content

Forced photometry pipeline for the Zwicky Transient Facility

Project description

DOI CI Coverage Status

fpbot

Provides a Forced Photometry Pipeline based on ztfquery and ztflc, needs IPAC as well as Marshal or AMPEL access.

Note: Requires Python >= 3.8. Also requires a MongoDB instance for storing the metadata, reachable under port 27017. This can be modified in database.py.

Installation

  1. Note that libpq-dev needs to be present. On Debian/Ubuntu, issue sudo apt install libpq-dev. On Mac OS, run brew install postgresql.

  2. Then install via: pip install fpbot.

  3. If MongoDB is not present, it can easily be installed. On Debian/Ubuntu, just follow this instruction set. After this, make sure the demon runs. Issue sudo systemctl start mongod and sudo systemctl enable mongod. On MacOS, make sure brew is present follow this tutorial.

  4. fpbot requires an environment variable so it knows where to store the data. Include a line in your .bashrc or .zshrc like export ZTFDATA='/absolute/path/to/ZTF-data-folder/'. If you don't need AMPEL access, you are done!


  1. If you want to use the AMPEL API for alert data (you don't have to!), you need credentials for the API. You can get these here.

  2. NOTE: If you are planning to run fpbot on a headless system which does not provide the luxury of a systemwide keychain, please add export ZTFHUB_MODE='HEADLESS' to your .bashrc or .zshrc. The pipeline will then uses ztfquery's base64-obfuscated password storage.

ALTERNATIVE: Use Docker container

fpbot comes shipped with a Dockerfile and a docker-compose.yml. Use them to build the docker container (this includes all dependencies as well as a MongoDB instance). Note: You have to provide a .ztfquery file in the fpbot directory containing access data for ztfquery (see ztfquery or ztflc for details).

First, clone this project: git clone https://github.com/simeonreusch/fpbot

The container can be built by navigating to the just cloned directory and issuing

docker-compose build

in the directory containing 1) the Dockerfile, 2) the docker-compose.yml and 3) the .ztfquery credentials file and run with

docker-compose run -p 8000:8000 fpbot. This exposes the web API to port 8000 of your local machine.

Troubleshooting

Make sure that ztfquery and ztflc are installed with the latest version.

In case way too few images are downloaded, check your Marshal and IRSA credentials. These are stored in ~.ztfquery. If there is a problem with these, ztfquery will not complain but simply only download publicly accessible images.

Usage

By importing class

All functionality of the command-line tool is present in the class. Just call it according to the commands available in pipeline.py.

For example:

from fpbot.pipeline import ForcedPhotometryPipeline

pl = ForcedPhotometryPipeline(
    file_or_name="ZTF19aatubsj",
    daysago=90,
    nprocess=24
)

pl.download()
pl.psffit()
pl.plot()

By systemwide command (fp name -operations --options)

Always:

name A ZTF name has to be provided, or an ASCII file containing one ZTF name in each line or an arbitrary name if followed by the ra/dec-option as to be provided.

optionally:

-radec [RA DEC] If this is given, the name can be chosen arbitrarily (but a name MUST be provided). Radec must be given in a format that can be parsed by astropy; e.g. -radec 218.487548 +40.243758.

Additional commands

-dl Downloads the images used for forced photometry from IPAC. Needs a valid IPAC account.

-fit Performs the PSF-photometry fit and generates plots of the lightcurve(s).

-plot Plots the lightcurve(s).

-plotflux Plots the lightcurve(s), but with flux instead of magnitude.

-saltfit Fits the lightcurve using SALT2 as provided by sncosmo.

-sciimg Experimental: Also downloads the science images from IPAC (note: to create thumbnails if specified)

-thumbnails Experimental: Generates thumbnails for all science-images. Science images have to be downloaded (see -sciimg)

Options

--nprocess [int] Specifies the number of processes spawned for parallel computing. Default is 4. Note: download is always performed with 32 processes in parallel, as IPAC upload-speed is the bottleneck there.

--daysago [int] Determines how old the photometric data should be. Default: all.

--daysuntil [int] Determines how new the photometric data should be. Default: all.

--snt [float] Specifies the signal-to-noise ratio for plotting and SALT-fitting.

--magrange [float float] Defines upper and lower magnitude bound for plotting the lightcurves; order is irrelevant.

--fluxrange [float float] Defines lower and upper flux bound for plotting the flux lightcurves; order is irrelevant.

Examples

fp ZTF19aatubsj downloads this ZTF object, does forced photometry, plots it and saves it to the default directory in "forcephotometry" (ZTFDATA, located at $ZTFDATA in your .bashrc/.zshrc/..., see ztfquery doc).

fp example_download.dat -dl -fit downloads the two lightcurves in the file example_download.dat, fits, but does not plots them.

fp ZTF19abimkwn -dl -fit -saltfit --nprocess 16 downloads all images for ZTF18abtmbaz found on IPAC, performs PSF-fitting, plots a lightcurve and fits the lightcurve with a SALT2 template with 16 processes in parallel.

fp supernovae.txt -dl Downloads all difference images for ZTF transients found in supernovae.txt, each line a ZTFname. To get a cool example of ZTF lightcurves, issue: example_download.txt Note: Downloading the images usually takes a considerable amount of time.

fp this_looks_interesting -radec 143.3123 66.42342 -dl -fit -plot --daysago 10 -magrange 18 20 Downloads all images of the last ten days of the location given in ra and dec, performs PSF-fits and plots the lightcurve in the 18--20 magnitude range.

By systemwide bulk command (fpbulk file.txt -operations --options)

file.txt must be an ASCII file containing one ZTF-ID per line. The usual options apply (e.g. -dl, -fit).

Requirements

  • ztfquery is used to download the image files from IPAC.
  • ztflc is used for PSF-fitting.
  • Marshal or AMPEL credentials are neccessary for the pipeline to work.

Notes

Slackbot

There is a bot for Slack included, based on the SlackRTM-API. You have to create a classic Slack app for this, because the newer version depends on the Events API, which itself seems to need a web server to run. Classic slack Apps can be created here. Make sure not to convert to the new permission/privilege system in the process (Slack tries to push you towards it, be careful). After successfully setting up the App/bot and giving it permissions, change the bot-username to the one of your bot in start_slackbot.py and it should basically work (first start requires you to enter the bot- and bot-user credentials, also provided by Slack).

Saltfit module

Still experimental! Performs saltfits on the generated lightcurves.

Resulting dataframe

The dataframes resulting after plotting (located at ZTDATA/forcephotometry/plot/dataframes) consists of the following columns:

  • sigma(.err): The intrinsic error
  • ampl(.err): The flux amplitude (error)
  • fval: Total minimized value
  • chi2(dof): PSF-fit chi square (per degrees of freedom)
  • Columns 9-39: The science image header
  • target_x/y: pixel position of target
  • data_hasnan: Data contains NaN-values (should always be False)
  • F0: Zero point magnitude from header converted to flux
  • Fratio(.err): Flux to flux zero point ratio (error)
  • upper_limit: For forced photometry result < signal to noise threshold, this is the limiting magnitude from the Marshal (see maglim column)
  • mag(_err): Flux amplitude (error) converted to magnitude. For detections below signal to noise threshold, this is 99

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fpbot-1.0.8.tar.gz (15.9 MB view details)

Uploaded Source

Built Distribution

fpbot-1.0.8-py3-none-any.whl (16.3 MB view details)

Uploaded Python 3

File details

Details for the file fpbot-1.0.8.tar.gz.

File metadata

  • Download URL: fpbot-1.0.8.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.1 Linux/5.15.0-1031-azure

File hashes

Hashes for fpbot-1.0.8.tar.gz
Algorithm Hash digest
SHA256 d450a42d08e8aba10935e47b93b66a408e557c75e6eed3d537df32781a692259
MD5 095bff796e45e1f05d8ac1661e771040
BLAKE2b-256 4c4cf04831cfa9250c949a98bbb0c67fe08f82fb76854182b3c609f0a20a3ac2

See more details on using hashes here.

File details

Details for the file fpbot-1.0.8-py3-none-any.whl.

File metadata

  • Download URL: fpbot-1.0.8-py3-none-any.whl
  • Upload date:
  • Size: 16.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.1 Linux/5.15.0-1031-azure

File hashes

Hashes for fpbot-1.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 694a09f8a9a45f624c8e37a1571a74d037f9cf9c2a2c4cf5ac7f4d189e7ed115
MD5 198b03793cde8116a5726c78592c3c6b
BLAKE2b-256 c66c8089a6b93471c61bd3db323e123cb1c028eab03d900285b7b8db99d43725

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page