Skip to main content

gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit

Project description

GraphBin-Tk: assembly graph-based metagenomic binning toolkit

GitHub License CI codecov CodeQL Documentation Status Code style: black

GraphBin-Tk combines assembly graph-based metagenomic bin-refinement and binning techniques GraphBin, GraphBin2 and MetaCoAG along with support functionality to visualise and evaluate results, into one comprehensive toolkit.

Initial binning

Detailed documentation is available at Read the Docs

Installing GraphBin-Tk

Please follow the steps below to install gbintk using flit. gbintk will be added to Bioconda and PyPI soon.

# clone repository
git clone https://github.com/metagentools/gbintk.git

# move to gbintk directory
cd gbintk

# create and activate conda env
conda env create -f environment.yml
conda activate gbintk

# install using flit
flit install

# test installation
gbintk --help

Available subcommands in GraphBin-Tk

Run gbintk --help or gbintk -h to list the help message for GraphBin-Tk.

Usage: gbintk [OPTIONS] COMMAND [ARGS]...

  gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit

Options:
  -v, --version  Show the version and exit.
  -h, --help     Show this message and exit.

Commands:
  graphbin   GraphBin: Refined Binning of Metagenomic Contigs using...
  graphbin2  GraphBin2: Refined and Overlapped Binning of Metagenomic...
  metacoag   MetaCoAG: Binning Metagenomic Contigs via Composition,...
  prepare    Format the initial binning result from an existing binning tool
  visualise  Visualise binning and refinement results
  evaluate   Evaluate the binning results given a ground truth

Citation

If you use GraphBin-Tk in your work, please cite the relevant tools.

GraphBin

Vijini Mallawaarachchi, Anuradha Wickramarachchi, Yu Lin. GraphBin: Refined binning of metagenomic contigs using assembly graphs. Bioinformatics, Volume 36, Issue 11, June 2020, Pages 3307–3313, DOI: https://doi.org/10.1093/bioinformatics/btaa180

GraphBin2

Vijini G. Mallawaarachchi, Anuradha S. Wickramarachchi, and Yu Lin. GraphBin2: Refined and Overlapped Binning of Metagenomic Contigs Using Assembly Graphs. In 20th International Workshop on Algorithms in Bioinformatics (WABI 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 172, pp. 8:1-8:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020). DOI: https://doi.org/10.4230/LIPIcs.WABI.2020.8

Mallawaarachchi, V.G., Wickramarachchi, A.S. & Lin, Y. Improving metagenomic binning results with overlapped bins using assembly graphs. Algorithms Mol Biol 16, 3 (2021). DOI: https://doi.org/10.1186/s13015-021-00185-6

MetaCoAG

Mallawaarachchi, V., Lin, Y. (2022). MetaCoAG: Binning Metagenomic Contigs via Composition, Coverage and Assembly Graphs. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-04749-7_5

Vijini Mallawaarachchi and Yu Lin. Accurate Binning of Metagenomic Contigs Using Composition, Coverage, and Assembly Graphs. Journal of Computational Biology 2022 29:12, 1357-1376. DOI: https://doi.org/10.1089/cmb.2022.0262

Funding

GraphBin-Tk is funded by an Essential Open Source Software for Science Grant from the Chan Zuckerberg Initiative.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbintk-0.1.0.tar.gz (64.5 MB view details)

Uploaded Source

Built Distribution

gbintk-0.1.0-py3-none-any.whl (34.5 kB view details)

Uploaded Python 3

File details

Details for the file gbintk-0.1.0.tar.gz.

File metadata

  • Download URL: gbintk-0.1.0.tar.gz
  • Upload date:
  • Size: 64.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for gbintk-0.1.0.tar.gz
Algorithm Hash digest
SHA256 b7eb75ebeefafbe463b59db746b8670a620588a49f14cd05aab5399b19bc17ad
MD5 cff2d1ab6453ebd031876a57773322f0
BLAKE2b-256 d30c0a8ce2e68896b6da8756cdfc01a45ada7106dee899eb0391de42ac2e49b3

See more details on using hashes here.

File details

Details for the file gbintk-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: gbintk-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 34.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for gbintk-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6ade04798aa14624168e33f40cdcf4b07f36231e0b879c28081918c0ec1e1aa2
MD5 5a0e5b1f2730e526adb43f777276adad
BLAKE2b-256 2249374a340096614b115c804716fe6d04bcb02edb423e49e5146d155d3af335

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page