Genderizer tries to infer gender information looking at first name and/or making text analysis
Project description
Genderizer
======================
Genderizer is a language independent module which tries to detect gender by looking given first names and/or analyzing sample texts.
##Installation
You can install this package using the following ```pip``` command:
```sh
$ sudo pip install genderizer
```
##Examples
```python
1
print Genderizer.detect(firstName = 'John')
# >>> male
print Genderizer.detect(firstName = 'Marry')
# >>> female
print Genderizer.detect(firstName = 'mustafa')
# >>> male
print Genderizer.detect(firstName = 'fatma')
# >>> female
print Genderizer.detect(firstName = 'fikret')
# >>> None
print Genderizer.detect(firstName = 'fikret', text='galatasary maçı kaçmaz')
# >>> male
print Genderizer.detect(firstName = 'fikret', text='annemlerle yemek yedik')
# >>> female
print Genderizer.detect(text='askerlik yoklamasını kaçırdım mk')
# >>> male
print Genderizer.detect(text='bana çiçek alan erkek için canım feda')
# >>> female
print Genderizer.detect(firstName='fatma', text='askerlik yoklamasını kaçırdım mk')
# >>> female
print Genderizer.detect(text='futbol sevgi')
# >>> None
print Genderizer.detect(text='lan bi siktir git')
# >>> male
```
***Note***: You may claim that women can say ```lan bi siktir git```, of course. But the probability of being female is less than the probability of being male according the trained data of the classifier.
By the way, in Turkish saying 'lan bi siktir git' makes you quite rude.
## How It Works
Genderizer is a module which tries to detect gender by looking given first names and/or analyzing sample text of a person.
If a first name is definitely used for only one gender, the system will accept this gender and will not make any further analysis. For example, while 'Mustafa', 'Osman', 'Hasan' is used in Turkish only for male; 'Fatma', 'Ceyda', 'Elif' only for female.
When looking at first names does not infer any gender for sure, the system will make text analysis if it is given. For example; 'Ekim', 'Meric', or 'Tümay' is used for both male and female.
The text analysis is the classification of sample texts. It simply try to compute the probability of being male or female mining the sample text. In this system Naive Bayesian Classification is adopted and [naiveBayesClassifier][1] is used.
## How To Improve It
TODO: write a step by step guide
##Preparing Language Dependent Training Sets
TODO: give a few examples
## Customization and Optimization
TODO: Tell what options are there and when to choose
```python
MongoNamesCollection.mongodbURL = 'mongodb://192.168.1.170'
Genderizer.init(
lang='tr',
namesCollection=MongoNamesCollection
)
MemcachedNamesCollection.memcacheHost = '127.0.0.1:11211'
Genderizer.init(
lang='tr',
namesCollection=MemcachedNamesCollection
)
Genderizer.init(
lang='tr',
namesCollection=NamesCollection,
classifier=Classifier(CachedModel.get('tr'), tokenizer)
)
print Genderizer.detect(firstName = 'fikret', text='annem')
```
## TODO
* inline docs
* unit-tests
## AUTHORS
* Mustafa Atik [@muatik][2]
* Nejdet Yucesoy @nejdetckenobi
[1]: https://github.com/muatik/naive-bayes-classifier
[2]: https://twitter.com/muatik2
======================
Genderizer is a language independent module which tries to detect gender by looking given first names and/or analyzing sample texts.
##Installation
You can install this package using the following ```pip``` command:
```sh
$ sudo pip install genderizer
```
##Examples
```python
1
print Genderizer.detect(firstName = 'John')
# >>> male
print Genderizer.detect(firstName = 'Marry')
# >>> female
print Genderizer.detect(firstName = 'mustafa')
# >>> male
print Genderizer.detect(firstName = 'fatma')
# >>> female
print Genderizer.detect(firstName = 'fikret')
# >>> None
print Genderizer.detect(firstName = 'fikret', text='galatasary maçı kaçmaz')
# >>> male
print Genderizer.detect(firstName = 'fikret', text='annemlerle yemek yedik')
# >>> female
print Genderizer.detect(text='askerlik yoklamasını kaçırdım mk')
# >>> male
print Genderizer.detect(text='bana çiçek alan erkek için canım feda')
# >>> female
print Genderizer.detect(firstName='fatma', text='askerlik yoklamasını kaçırdım mk')
# >>> female
print Genderizer.detect(text='futbol sevgi')
# >>> None
print Genderizer.detect(text='lan bi siktir git')
# >>> male
```
***Note***: You may claim that women can say ```lan bi siktir git```, of course. But the probability of being female is less than the probability of being male according the trained data of the classifier.
By the way, in Turkish saying 'lan bi siktir git' makes you quite rude.
## How It Works
Genderizer is a module which tries to detect gender by looking given first names and/or analyzing sample text of a person.
If a first name is definitely used for only one gender, the system will accept this gender and will not make any further analysis. For example, while 'Mustafa', 'Osman', 'Hasan' is used in Turkish only for male; 'Fatma', 'Ceyda', 'Elif' only for female.
When looking at first names does not infer any gender for sure, the system will make text analysis if it is given. For example; 'Ekim', 'Meric', or 'Tümay' is used for both male and female.
The text analysis is the classification of sample texts. It simply try to compute the probability of being male or female mining the sample text. In this system Naive Bayesian Classification is adopted and [naiveBayesClassifier][1] is used.
## How To Improve It
TODO: write a step by step guide
##Preparing Language Dependent Training Sets
TODO: give a few examples
## Customization and Optimization
TODO: Tell what options are there and when to choose
```python
MongoNamesCollection.mongodbURL = 'mongodb://192.168.1.170'
Genderizer.init(
lang='tr',
namesCollection=MongoNamesCollection
)
MemcachedNamesCollection.memcacheHost = '127.0.0.1:11211'
Genderizer.init(
lang='tr',
namesCollection=MemcachedNamesCollection
)
Genderizer.init(
lang='tr',
namesCollection=NamesCollection,
classifier=Classifier(CachedModel.get('tr'), tokenizer)
)
print Genderizer.detect(firstName = 'fikret', text='annem')
```
## TODO
* inline docs
* unit-tests
## AUTHORS
* Mustafa Atik [@muatik][2]
* Nejdet Yucesoy @nejdetckenobi
[1]: https://github.com/muatik/naive-bayes-classifier
[2]: https://twitter.com/muatik2