Skip to main content

Genderizer tries to infer gender information looking at first name and/or making text analysis

Project description

Genderizer
======================

Genderizer is a language independent module which tries to detect gender by looking given first names and/or analyzing sample texts.

##Installation
You can install this package using the following ```pip``` command:

```sh
$ sudo pip install genderizer
```


##Examples

```python
1
print Genderizer.detect(firstName = 'John')
# >>> male

print Genderizer.detect(firstName = 'Marry')
# >>> female

print Genderizer.detect(firstName = 'mustafa')
# >>> male

print Genderizer.detect(firstName = 'fatma')
# >>> female

print Genderizer.detect(firstName = 'fikret')
# >>> None

print Genderizer.detect(firstName = 'fikret', text='galatasary maçı kaçmaz')
# >>> male

print Genderizer.detect(firstName = 'fikret', text='annemlerle yemek yedik')
# >>> female

print Genderizer.detect(text='askerlik yoklamasını kaçırdım mk')
# >>> male

print Genderizer.detect(text='bana çiçek alan erkek için canım feda')
# >>> female

print Genderizer.detect(firstName='fatma', text='askerlik yoklamasını kaçırdım mk')
# >>> female

print Genderizer.detect(text='futbol sevgi')
# >>> None

print Genderizer.detect(text='lan bi siktir git')
# >>> male

```
***Note***: You may claim that women can say ```lan bi siktir git```, of course. But the probability of being female is less than the probability of being male according the trained data of the classifier.

By the way, in Turkish saying 'lan bi siktir git' makes you quite rude.


## How It Works
Genderizer is a module which tries to detect gender by looking given first names and/or analyzing sample text of a person.

If a first name is definitely used for only one gender, the system will accept this gender and will not make any further analysis. For example, while 'Mustafa', 'Osman', 'Hasan' is used in Turkish only for male; 'Fatma', 'Ceyda', 'Elif' only for female.

When looking at first names does not infer any gender for sure, the system will make text analysis if it is given. For example; 'Ekim', 'Meric', or 'Tümay' is used for both male and female.

The text analysis is the classification of sample texts. It simply try to compute the probability of being male or female mining the sample text. In this system Naive Bayesian Classification is adopted and [naiveBayesClassifier][1] is used.

## How To Improve It
TODO: write a step by step guide

##Preparing Language Dependent Training Sets
TODO: give a few examples

## Customization and Optimization
TODO: Tell what options are there and when to choose
```python
MongoNamesCollection.mongodbURL = 'mongodb://192.168.1.170'
Genderizer.init(
lang='tr',
namesCollection=MongoNamesCollection
)

MemcachedNamesCollection.memcacheHost = '127.0.0.1:11211'
Genderizer.init(
lang='tr',
namesCollection=MemcachedNamesCollection
)

Genderizer.init(
lang='tr',
namesCollection=NamesCollection,
classifier=Classifier(CachedModel.get('tr'), tokenizer)
)

print Genderizer.detect(firstName = 'fikret', text='annem')

```

## TODO
* inline docs
* unit-tests

## AUTHORS
* Mustafa Atik [@muatik][2]
* Nejdet Yucesoy @nejdetckenobi


[1]: https://github.com/muatik/naive-bayes-classifier
[2]: https://twitter.com/muatik2

Project details


Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page