Skip to main content

Earth Science PRoblems for the Evaluation of Strategies, Solvers and Optimizers

Project description

Espresso

PyPI version build Documentation Status Slack

Related repositories by InLab

Introduction

Earth Science PRoblems for the Evaluation of Strategies, Solvers and Optimizers (Espresso) is a collection of datasets, and associated simulation codes, spanning a wide range of geoscience problems. Together they form a suite of real-world test problems that can be used to support the development, evaluation and benchmarking of a wide range of tools and algorithms for inference, inversion and optimisation. All problems are designed to share a common interface, so that changing from one test problem to another requires changing one line of code.

The Espresso project is a community effort - if you think it sounds useful, please consider contributing an example or two from your own research. The project is currently being coordinated by InLab, with support from the CoFI development team.

For more information, please visit our documentation.

Installation

$ pip install geo-espresso

Check Espresso documentation - installation page for details on dependencies and setting up with virtual environments.

Basic usage

Once installed, each test problem can be imported using the following command:

from espresso import <testproblem>

Replace <testproblem> with an actual problem class in Espresso, such as SimpleRegression and FmmTomography. See here for a full list of problems Espresso currently includes.

Once a problem is imported, its main functions can be called using the same structure for each problem. For instance:

from espresso import FmmTomography

problem = FmmTomography(example_number=1)
model = problem.good_model
data = problem.data
pred = problem.forward(model)
fig_model = problem.plot_model(model)

You can access related metadata programatically:

print(FmmTomography.metadata["problem_title"])
print(FmmTomography.metadata["problem_short_description"])
print(FmmTomography.metadata["author_names"])

Other problem-specific parameters can be accessed through the problem instance. For instance:

print(problem.extent)
print(problem.model_shape)

Which additional values are set is highly problem-specific and we suggest to consult the Espresso Documentation on the problems.

Contributing

Interested in contributing? Please check out our contributor's guide.

Licence

Espresso is a community driven project to create a large suite of forward simulations to enable researchers to get example data without the need to understand each individual problem in detail.

Licensing is done individually by each contributor. If a contributor wants to freely share their code example we recommend the MIT licence or a 2-clause BSD licence. To determine the licence of an existing Espresso problem, please consult the documentation section of that problem.

All the other core functions of Espresso written by InLab Espresso developer team are distributed under a 2-clause BSD licence. A copy of this licence is provided with distributions of the software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geo_espresso-0.3.16.tar.gz (73.4 MB view details)

Uploaded Source

Built Distributions

geo_espresso-0.3.16-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.16-cp313-cp313-macosx_11_0_arm64.whl (74.0 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

geo_espresso-0.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.16-cp311-cp311-macosx_11_0_arm64.whl (74.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

geo_espresso-0.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.16-cp310-cp310-macosx_11_0_arm64.whl (74.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

geo_espresso-0.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.16-cp39-cp39-macosx_11_0_arm64.whl (74.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

geo_espresso-0.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

geo_espresso-0.3.16-cp38-cp38-macosx_11_0_arm64.whl (74.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file geo_espresso-0.3.16.tar.gz.

File metadata

  • Download URL: geo_espresso-0.3.16.tar.gz
  • Upload date:
  • Size: 73.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.20

File hashes

Hashes for geo_espresso-0.3.16.tar.gz
Algorithm Hash digest
SHA256 3c5c5b8c644c4d9ec3bb947f3215444b6a596d75152643fd09e87ec695e25140
MD5 1e185afb32e0920df24a5371dc18bc2f
BLAKE2b-256 513bc7e7e50fa61f8250116c346157462f5e25fe246599bbd89753b6ca4db937

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfe44c20e602f53c542c712e512379fc5f049cec1305d5a9b83174aeca083dde
MD5 33fc1827db0d67b37cd51ed8e7bddeba
BLAKE2b-256 b05cb233f587e80418e43a0d007f2244e90aa9ef2b7ddbfab027b0ac54ed2bc5

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7855b1f8a2fc3aa3535fce1045553248f48b87aad176ed8a93f251cbc3709474
MD5 c41232886e4826c2516af030200e73a0
BLAKE2b-256 af2bfbec2b74c697e111600b4ff247d652fb0e45b23feef792d78f679e9bc3de

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35e98f7665d4b89dc863ef3cd40486440e51700bca3826f9b948f1892edf8f52
MD5 f82b0f15b869ff2c7a4c831ddce621d4
BLAKE2b-256 5c82a33f5ef4c6b5fe95e5423761ab2aaa2183b47f2ff55b2b94a1ad4345d9e2

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f386a818fdb518d76db0d73874d054cf51d411d072f0838ac919e0b6621e329d
MD5 e5a445920330c01b110ca947e198eca1
BLAKE2b-256 1eed9fdd7cd206af12e420a531a55ba2e3cc9a55503dd964c6695d72d0cdad10

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5c96888878ed1bd9a1d5c738adaa4178cfa866368b61f22dcb2b2a599d9f8a5
MD5 9dd1ca991702991f60c627ec93c6f7d9
BLAKE2b-256 d90c1dd98253a3f2a94dd3ba3d94b39664b281786cb7c8ea44cebe4b14b137d9

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dbb5f59f1b5280b2c1245f38fc6bffb0c7af7d6a9cdc3caeec2876146381678a
MD5 b7605246e8871ed3dc3880501ae610eb
BLAKE2b-256 c8e864419e8d2c4e51dfc30f5d934f529a5fe7f65a5206013f1bb9efbec6d26f

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2eef757f1a4a8b7655db573c6808beb4d401a6352018d96660da77c726c9cd03
MD5 b62fdd25972428bef8c6444b8ae54e6a
BLAKE2b-256 00aac4506123619b8af65c0d5dbb385c3912a580336a064e520cfc8b6bea7d8a

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b7973fd9ffd00194496899cd83b26fbf3120affd961da7dad18da0af6b10bb8e
MD5 fa17e2d1e8c65df8b561d402805c802d
BLAKE2b-256 9e706f0735897c098aea663c1a1d6095030dc968cc0563417cde402723b48265

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1bf55f68d5ec203ea1898a3a07818b2e1ec9348c62683bb17fbf15abcc40436
MD5 9bb6856ef49ce38af27bb9daabbc50d7
BLAKE2b-256 e036ce9cb8f4a08bf0b8c0c0329e0813d43e08359b95713612361492e3079955

See more details on using hashes here.

File details

Details for the file geo_espresso-0.3.16-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for geo_espresso-0.3.16-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0edd4c7ea26170a7f7508a93b8f1e6b0ec2864a790606045c438a36365c1ce00
MD5 5be3d9fa07f84b10b26b4ff10ef4a776
BLAKE2b-256 beb35d105606d62e451fa73f6c24f915bbb1dd7251ec84ff98bed824b7a6797b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page