Skip to main content

Tiny data-over-sound library.

Project description

ggwave-wheels

Original project: https://github.com/ggerganov/ggwave/

This fork: https://github.com/matteotenca/ggwave-wheels

This is just a set of updated files needed to install ggwave version 0.4.2 under Python versions > 3.10. The original ggwave on PyPI fails to install in some circumstancies, due to the pre-cythonized .cpp distributed inside the package.

This version is identical to the orginal, but adds a pyproject.toml file and a updated setup.py. This way, wheel, setuptools and cython are temporary installed as build requirements, and used to create a new cythonized .cpp. After that, the .cpp file is compiled and the egg installed, and the build environment then is cleaned.

This works under Windows too, VS is needed, but and some pre-built wheel for AMD64 architecture are included.

Original README:

ggwave

Tiny data-over-sound library.

# generate audio waveform for string "hello python"
waveform = ggwave.encode("hello python")

# decode audio waveform
text = ggwave.decode(instance, waveform)

Features

  • Audible and ultrasound transmissions available

  • Bandwidth of 8-16 bytes/s (depending on the transmission protocol)

  • Robust FSK modulation

  • Reed-Solomon based error correction

Installation

pip install ggwave

API

encode()

encode(payload, [protocolId], [volume], [instance])

Encodes payload into an audio waveform.

Output of help(ggwave.encode):

built-in function encode in module ggwave

encode(...)
    Encode payload into an audio waveform.
    @param {string} payload, the data to be encoded
    @return Generated audio waveform bytes representing 16-bit signed integer samples.

decode()

decode(instance, waveform)

Analyzes and decodes waveform into to try and obtain the original payload. A preallocated ggwave instance is required.

Output of help(ggwave.decode):

built-in function decode in module ggwave

decode(...)
    Analyze and decode audio waveform to obtain original payload
    @param {bytes} waveform, the audio waveform to decode
    @return The decoded payload if successful.

Usage

  • Encode and transmit data with sound:

import ggwave
import pyaudio

p = pyaudio.PyAudio()

# generate audio waveform for string "hello python"
waveform = ggwave.encode("hello python", protocolId = 1, volume = 20)

print("Transmitting text 'hello python' ...")
stream = p.open(format=pyaudio.paFloat32, channels=1, rate=48000, output=True, frames_per_buffer=4096)
stream.write(waveform, len(waveform)//4)
stream.stop_stream()
stream.close()

p.terminate()
  • Capture and decode audio data:

import ggwave
import pyaudio

p = pyaudio.PyAudio()

stream = p.open(format=pyaudio.paFloat32, channels=1, rate=48000, input=True, frames_per_buffer=1024)

print('Listening ... Press Ctrl+C to stop')
instance = ggwave.init()

try:
    while True:
        data = stream.read(1024, exception_on_overflow=False)
        res = ggwave.decode(instance, data)
        if (not res is None):
            try:
                print('Received text: ' + res.decode("utf-8"))
            except:
                pass
except KeyboardInterrupt:
    pass

ggwave.free(instance)

stream.stop_stream()
stream.close()

p.terminate()

More

Check out http://github.com/ggerganov/ggwave for more information about ggwave!

Development

Check out ggwave python package on Github.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ggwave_wheels-0.4.2.5.tar.gz (97.4 kB view details)

Uploaded Source

Built Distributions

ggwave_wheels-0.4.2.5-pp310-pypy310_pp73-win_amd64.whl (53.4 kB view details)

Uploaded PyPy Windows x86-64

ggwave_wheels-0.4.2.5-pp39-pypy39_pp73-win_amd64.whl (53.4 kB view details)

Uploaded PyPy Windows x86-64

ggwave_wheels-0.4.2.5-pp38-pypy38_pp73-win_amd64.whl (53.0 kB view details)

Uploaded PyPy Windows x86-64

ggwave_wheels-0.4.2.5-cp313-cp313-win_amd64.whl (56.9 kB view details)

Uploaded CPython 3.13 Windows x86-64

ggwave_wheels-0.4.2.5-cp313-cp313-win32.whl (48.1 kB view details)

Uploaded CPython 3.13 Windows x86

ggwave_wheels-0.4.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (401.0 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

ggwave_wheels-0.4.2.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (394.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ggwave_wheels-0.4.2.5-cp313-cp313-macosx_11_0_arm64.whl (63.0 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

ggwave_wheels-0.4.2.5-cp313-cp313-macosx_10_13_x86_64.whl (69.6 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

ggwave_wheels-0.4.2.5-cp312-cp312-win_amd64.whl (57.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

ggwave_wheels-0.4.2.5-cp312-cp312-win32.whl (48.3 kB view details)

Uploaded CPython 3.12 Windows x86

ggwave_wheels-0.4.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (405.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ggwave_wheels-0.4.2.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (397.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ggwave_wheels-0.4.2.5-cp312-cp312-macosx_11_0_arm64.whl (63.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ggwave_wheels-0.4.2.5-cp312-cp312-macosx_10_13_x86_64.whl (70.1 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

ggwave_wheels-0.4.2.5-cp311-cp311-win_amd64.whl (56.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

ggwave_wheels-0.4.2.5-cp311-cp311-win32.whl (48.1 kB view details)

Uploaded CPython 3.11 Windows x86

ggwave_wheels-0.4.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (405.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ggwave_wheels-0.4.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (396.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ggwave_wheels-0.4.2.5-cp311-cp311-macosx_11_0_arm64.whl (63.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ggwave_wheels-0.4.2.5-cp311-cp311-macosx_10_9_x86_64.whl (69.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

ggwave_wheels-0.4.2.5-cp310-cp310-win_amd64.whl (56.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

ggwave_wheels-0.4.2.5-cp310-cp310-win32.whl (48.5 kB view details)

Uploaded CPython 3.10 Windows x86

ggwave_wheels-0.4.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (382.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ggwave_wheels-0.4.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (377.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ggwave_wheels-0.4.2.5-cp310-cp310-macosx_11_0_arm64.whl (63.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ggwave_wheels-0.4.2.5-cp310-cp310-macosx_10_9_x86_64.whl (69.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

ggwave_wheels-0.4.2.5-cp39-cp39-win_amd64.whl (56.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

ggwave_wheels-0.4.2.5-cp39-cp39-win32.whl (48.5 kB view details)

Uploaded CPython 3.9 Windows x86

ggwave_wheels-0.4.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (382.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ggwave_wheels-0.4.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (377.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ggwave_wheels-0.4.2.5-cp39-cp39-macosx_11_0_arm64.whl (63.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ggwave_wheels-0.4.2.5-cp39-cp39-macosx_10_9_x86_64.whl (69.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

ggwave_wheels-0.4.2.5-cp38-cp38-win_amd64.whl (56.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

ggwave_wheels-0.4.2.5-cp38-cp38-win32.whl (48.5 kB view details)

Uploaded CPython 3.8 Windows x86

ggwave_wheels-0.4.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (376.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ggwave_wheels-0.4.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (371.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file ggwave_wheels-0.4.2.5.tar.gz.

File metadata

  • Download URL: ggwave_wheels-0.4.2.5.tar.gz
  • Upload date:
  • Size: 97.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for ggwave_wheels-0.4.2.5.tar.gz
Algorithm Hash digest
SHA256 af2355ed9281346870222dd0ae60a50c234f9a7478db917a6489eae61e713aac
MD5 1b214485b3f21f2e04c13fb2a7edebc6
BLAKE2b-256 6a12a5f665a92db2597fade2b5bf5741ac88671f489e93815ecc9df772c92ce2

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 eae63f48d93261821fe7616e749ae29cfe3fa52c0bce02e7e19480d96f5f78dc
MD5 41e534ec9d4faa35f2f2269fcedd4254
BLAKE2b-256 b96b687776038a8fd6ed3435c3803d60a56d6a99cb0a81317efcf9964893ca5b

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2d4aea239b63d0e36ba5ab508c597a6ceba257f166a19d77504f812457093ee0
MD5 38b68ab2a6688d9b3e1e91e2d8a9a7bf
BLAKE2b-256 8003a97e125201a20b2c7e2e4ef664a70c5113d91ba10fa8a9bbd58405375fd9

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 733230b3180aa8a576509b57ca4924452a16cf19c7aa111c70267ecc77b3398f
MD5 b136a42669c8585627e188101c58630b
BLAKE2b-256 61a52d55acf8cd2d1f9dc81ec81a41cd01a6a6bafd3800c2efa6ef22517031c0

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 e792f8c86a8ff325362678633366cce1a6b9d9709ca706fda00946c75c6f4211
MD5 d5f6edcf29e83dde0cbac0b34fc00212
BLAKE2b-256 e34369bf949d2cff46b30cf3158ed2c867aa9d202b82194860cf4c77617a599e

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 da7ac56343bef3cec30f387f7c304c076980a430daaa71bb8bab0c934c5b6dc5
MD5 5f95aae16b9e88500b6226e85e471514
BLAKE2b-256 e758aebef319c42fbecb96e63adbbfca9037e0b4d942658f67e1cb479865c0bf

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e37a1cd122433775a9db5bac4fb42039a86b28c1f840ff270e98590b5d048509
MD5 da3f0b9783c1a37375c1cdc0492c2cf4
BLAKE2b-256 a10ff670ff1e7c7d18a41113bee2dd53e3d28603360178e5e97dcb4329e5cf95

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5f9d90a33e45af997cefcc8b6b7e5226e4c4f88a116dd2154687cadcd0954e6c
MD5 476e77d1111113e8b7adaf926cd4561f
BLAKE2b-256 f0a1f1e96d0ff62438d93fc5c3aaf310b1c42f4c161fa3784472728fd3c6fb25

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81b97952ebfd9b0d5015c9b37b96b4eed76eca2bbb150c30f2b2ec1f83498b59
MD5 11a51065d30b75e23bbf08e33bc94af9
BLAKE2b-256 a59230e1cd0d6b4291e19197c483b73eb536c1579bc4d3189aad04e1f6ddd295

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2f2c80765ac5700a7afee4fe300802a886e155d8997e9d24501e5e1d058de420
MD5 e5abf6fe21cd086aecec94deedd0d043
BLAKE2b-256 e1cef5e274c2576d7bf6955cad901bf31887e11dcc46c6eb71dc89be12732eb2

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9b53a71d86f5b2ff263d23e54ca6740c8d6fb5644c3f6b1480399e0e3c7f8e28
MD5 829ba6adb0a8abf4661a2f226fd8ffed
BLAKE2b-256 a2eb39dd49c9115aff9c9a5ff784871dd86dacec014d289a1c6a75fb23a62e21

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 a1b81220c4239bea9004f651faf6d6e4d155dbe2fb2949ebf641a9ea5909551d
MD5 4b0f8f638d94ace806ebb428d49b3903
BLAKE2b-256 365e3d961d6e82090f6df399c62b380854eed848eaefa36726eb3110ac4df0c6

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e77818f5cea3ebcd726a44a68c1ba96a236a7157f9aaa2d1402cd1f7aed81b8
MD5 dac71017f4ea7a2d2d77a0d6ab18291f
BLAKE2b-256 efb7251370f23658062df89c4c49353317311a41fff056b5084406d29cd73682

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a7a530c783ed9e158d86c6ca406d36488f60cd165336150fa48d2c1818e56207
MD5 e94ce482789a9270364b052148e7529d
BLAKE2b-256 45a9a585aab9db5f7f1ba83cfcc03e602cdaf5ac98bd79a7b1a9bee165788667

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec33ef18fa5eb586d17fbe9d31acd1b5bb287cbf687a09054b3082516fee1443
MD5 b28d059fe88008419e148827b0a19567
BLAKE2b-256 4c2002a1c5d3fa1b401aa8d77409f87aead67bc9893d90e314829e6f4ed43e71

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1fe3fdcf57bf5e8d24529d143e13ee59e4bd93e4c1e9fe1dcd8675d0b2b88666
MD5 05038abc3ad0f61ff8b69a329e843582
BLAKE2b-256 6bee9f57a4969015933648d5d1bb8385d36fddd36dfb325936db5c677bb2b34d

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 43e41992fc5804f58b603ca41be7ccf0ae03f24539e5495f564ca4696753baa5
MD5 46ce23e72ab628862d740993395cab10
BLAKE2b-256 34494edcfb4ba1b7ad81cd56560e18fbe4b91d6607389760bc58d1a2b94425c3

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d8f4ba92fb26efe619ebe48be2ca1a1d4af4a1fcbc2aa7ea63d3100e9ab0620f
MD5 d08ab771822c6ccaab82c502fe4f65ec
BLAKE2b-256 43fa12c16ab0e97ac34f78fe156b3e121950b78f6f1b388fb664d53ea0b1fd21

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 773241c86a9ff1fd7ecffee9a250c53c9f9ec8dedac7d042df5bc7de71859653
MD5 0d48f9d1280647b114be62c0dfdb26e6
BLAKE2b-256 15e82ef5990f3558b79f15979f4eae55f4d1a51c6492b37096f5cbc278a83fbe

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8db9d3e0821ef599bb4a558e9f08bc7db1fe27ae993b811875ec65d2e775acd3
MD5 e3cb1c23968689990bc8b3d8fe26966f
BLAKE2b-256 0dc3d4bf15f494dd5fbb99a2fab04c54e25336475605c877dd21112b10632ddd

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e391403ac13aca060317793a9d9242cc692516f8da51481637f9abed8c054de
MD5 802088db44ea0b901e1371b72e038a15
BLAKE2b-256 19327edb9988e7fda2d365ca8125c72048b08e5c65e55c00dcdb4c8351d74389

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87c8e472b6d2a212986600a2d4603ba1399269b0075525469eb6d721e24df1a7
MD5 1dd4e65ada8e500665a82cd581165151
BLAKE2b-256 371e03991bd875c08a0f2248aa75ff2a8ada934c7c41796baf308470270d2346

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 42c2fd8e70ec5593cc95fa493cd219a44605bdd792413070a9bfda5481a223ec
MD5 299fbd1b48ec0b537b14a389e5718aa9
BLAKE2b-256 05513a462d0d83b2e3ed5f1908ce216ee6633376641f54af5bcb134da3a4ec05

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 bd595cd7d2e078ce7cd75359899e96ea80d20837de9361b1fcd3fdfca2de2617
MD5 407f8f3a62782d634f7bb56db34e2120
BLAKE2b-256 bec78e618fba5b0eab9696534d8988866e7ac5d3bb4b20de4471b1e480054c13

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 188392f57a16bc2396db3e57de259ef9ce414505c1064c050917d74170ee7f61
MD5 6b9749a0cf23ae16ca78758943793bd4
BLAKE2b-256 f3138a7ad5ace260ce036262559cf7d74a8320261632ddd5fc548b058d8efd0e

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e2e44eae1c0c4129bb0ddfec4510a0b91a5c1efb0a9005f176324762b1ce23c7
MD5 ca1bb6bc616364704fb0a86b0177c8b6
BLAKE2b-256 cc1171050108e3821008e9677baa751d50dd0e93920112c86cf4620abc4ac1e7

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9d045f62a09b9c0d2c0c19efd33d6dff70aad736656c973db6153461bd68270
MD5 f55f6a14f01c10a5b1f53134be41a521
BLAKE2b-256 24f722426f018fd1457ec74467749c6fccc44a8adf47da279a80fb41f4bf1073

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d81c9cd74c2a153029120fbf6545896aff2fcd891cb45be21307b1c62f994fc2
MD5 9c75f95c4c920d441004b7b03c09e610
BLAKE2b-256 ff23544c42a4f95f0cb66533e116d2ec251ba6741bf7386865eb71efb00f32f9

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c6f0ec7ee67e838b4984389a2886c6f271496f1e49a7cceaddb913f292adf58a
MD5 fbe2f60a131a1d5ba58ea175444b86e6
BLAKE2b-256 c516f7ad7e978f4af431832c4aba743ab1176c10e8eb616570d1529c81eb8bdb

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 15ec9a45dbb1cb7f65bc797525a8bb77dda0cde03ea0cc561058ba18b9444319
MD5 924b89c71c46857976ff4eb8e8b26531
BLAKE2b-256 2b4756fc64db59c441daed6e62d19122c51a6999dd42a572ed77b2de65219cd7

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7cbdbc14b997f62085c63ebcc8a5058107302ffacd4ec116a670dac51ed6e05
MD5 c5510be43963b008d9b65cd96406a7e5
BLAKE2b-256 9725c6f9b71e2e5e1f6470359327d06ad89b11a4147920f6f991a1bf9266c6c6

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9078c25d18e7af137d5b13a7c1a72562c23ebe4026719f1a65d2ac8fa6c228e2
MD5 af0813dbb947f0f23b8d5ff02c912684
BLAKE2b-256 8c4eb0b66bba0ec2195698872a638792e91eeef5ad86ef418e18b31ab2082cca

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6692b28513ba6aabb4fdfc29ee17b3dd0ae341aee219594c478eb0e157251bf4
MD5 d56abd31af75fe44349cd5b6e438734a
BLAKE2b-256 184b59d51553be6637b37e9f5eee009f02e7ffab8d8a0edb682be0963d61cbca

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d37cff48d8be920bb36c15299fa8a444d2f2d59f130c5884be0c26ec5a9cf3c9
MD5 fd87b2f3fe2bff021783b781696838b4
BLAKE2b-256 e75e3c22f44271e024a04a2c7c9e3fc6dee72d20676b622531d8f099053f0796

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 973126af0a6b762ee40490a8a64d5d25938bea94654edd74b8ed4d1da22e1113
MD5 bff96fb45fcbe147cefafeafb1936e20
BLAKE2b-256 3eb3e13d86f42ae5edfde3fabe57ad6d0592a46c25ae4d01915201d982223713

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a4a3cbae8303260a3d487e87a188a254b4f1bde88102cb110808613aad53a2f7
MD5 20e14b2faff799076229067dea2a18cb
BLAKE2b-256 735c2078c6a3ac36d27bcd95f4dc705eb22f87bc0fee14601b50c02286e0121b

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db9a8edb3372dc0fece5ffcff21dcd254afdad8e4a9f50c16007d6e90cb55e9f
MD5 7a26aa1aff964cac8857f0a9a285e92c
BLAKE2b-256 293776a972a95ead2c3044db3d399c021ea71e98a8807723a8f4972f16f75b0b

See more details on using hashes here.

File details

Details for the file ggwave_wheels-0.4.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ggwave_wheels-0.4.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b5366562dcd9512bc6f348e2f4a35d0831610f310762e7c111a189c625f4ea76
MD5 83991b9ce9e7854e6c9de5fe26bc4070
BLAKE2b-256 14a5ee1c0b7ce699751c619c638fcd9f0a9bcd09b5d43596ab5979bb21408e4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page