Skip to main content

Generalist model for Relation Extraction (Extract any relation types from texts)

Project description

GLiREL : Generalist and Lightweight model for Zero-Shot Relation Extraction

GLiREL is a Relation Extraction model capable of classifying unseen relations given the entities within a text. This builds upon the excelent work done by Urchade Zaratiana, Nadi Tomeh, Pierre Holat, Thierry Charnois on the GLiNER library which enables efficient zero-shot Named Entity Recognition.


Installation

pip install glirel

Usage

Once you've downloaded the GLiREL library, you can import the GLiREL class. You can then load this model using GLiREL.from_pretrained and predict entities with predict_relations.

from glirel import GLiREL
import spacy

model = GLiREL.from_pretrained("jackboyla/glirel_beta")

nlp = spacy.load('en_core_web_sm')

text = 'Derren Nesbitt had a history of being cast in "Doctor Who", having played villainous warlord Tegana in the 1964 First Doctor serial "Marco Polo".'
doc = nlp(text)
tokens = [token.text for token in doc]

labels = ['country of origin', 'licensed to broadcast to', 'father', 'followed by', 'characters']

ner = [[26, 27, 'Q2989881', 'Marco Polo'], [22, 23, 'Q2989412', 'First Doctor']]

relations = model.predict_relations(tokens, labels, threshold=0.0, ner=ner, top_k=1)

print('Number of relations:', len(relations))

sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True)
print("\nDescending Order by Score:")
for item in sorted_data_desc:
    print(f"{item['head_text']} --> {item['label']} --> {item['tail_text']} | score: {item['score']}")

Expected Output

Number of relations: 2

Descending Order by Score:
{'head_pos': [26, 28], 'tail_pos': [22, 24], 'head_text': ['Marco', 'Polo'], 'tail_text': ['First', 'Doctor'], 'label': 'characters', 'score': 0.9923334121704102}
{'head_pos': [22, 24], 'tail_pos': [26, 28], 'head_text': ['First', 'Doctor'], 'tail_text': ['Marco', 'Polo'], 'label': 'characters', 'score': 0.9915636777877808}

Constrain labels

In practice, we usually want to define the types of entities that can exist as a head and/or tail of a relationship. This is already implemented in GLiREL:

labels = {"glirel_labels": {
    'co-founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]}, 
    'no relation': {},  # head and tail can be any entity type 
    'country of origin': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["LOC", "GPE"]}, 
    'parent': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]}, 
    'located in or next to body of water': {"allowed_head": ["LOC", "GPE", "FAC"], "allowed_tail": ["LOC", "GPE"]},  
    'spouse': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},  
    'child': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},  
    'founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},  
    'founded on date': {"allowed_head": ["ORG"], "allowed_tail": ["DATE"]},
    'headquartered in': {"allowed_head": ["ORG"], "allowed_tail": ["LOC", "GPE", "FAC"]},  
    'acquired by': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},  
    'subsidiary of': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]}, 
    }
}

Usage with spaCy

You can also load GliREL into a regular spaCy NLP pipeline. Here's an example using an English pipeline.

import spacy
import glirel

# Load a blank spaCy model or an existing one
nlp = spacy.load('en_core_web_sm')

# Add the GLiREL component to the pipeline
nlp.add_pipe("glirel", after="ner")

# Now you can use the pipeline with the GLiREL component
text = "Apple Inc. was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne in April 1976. The company is headquartered in Cupertino, California."

labels = {"glirel_labels": {
    'co-founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]}, 
    'country of origin': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["LOC", "GPE"]}, 
    'licensed to broadcast to': {"allowed_head": ["ORG"]},  
    'no relation': {},  
    'parent': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]}, 
    'followed by': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["PERSON", "ORG"]},  
    'located in or next to body of water': {"allowed_head": ["LOC", "GPE", "FAC"], "allowed_tail": ["LOC", "GPE"]},  
    'spouse': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},  
    'child': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},  
    'founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},  
    'headquartered in': {"allowed_head": ["ORG"], "allowed_tail": ["LOC", "GPE", "FAC"]},  
    'acquired by': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},  
    'subsidiary of': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]}, 
    }
}

# Add the labels to the pipeline at inference time
docs = list( nlp.pipe([(text, labels)], as_tuples=True) )
relations = docs[0][0]._.relations

print('Number of relations:', len(relations))

sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True)
print("\nDescending Order by Score:")
for item in sorted_data_desc:
    print(f"{item['head_text']} --> {item['label']} --> {item['tail_text']} | score: {item['score']}")

Expected Output

Number of relations: 5

Descending Order by Score:
['Apple', 'Inc.'] --> headquartered in --> ['California'] | score: 0.9854260683059692
['Apple', 'Inc.'] --> headquartered in --> ['Cupertino'] | score: 0.9569844603538513
['Steve', 'Wozniak'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.09025496244430542
['Steve', 'Jobs'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.08805803954601288
['Ronald', 'Wayne'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.07996643334627151

To run experiments

FewRel: ~56k examples WikiZSL: ~85k examples

# few_rel
cd data
python process_few_rel.py
cd ..
# adjust config
python train.py --config config_few_rel.yaml
# wiki_zsl
cd data
python process_wiki_zsl.py
cd ..
# <adjust config>
python train.py --config config_wiki_zsl.yaml

Example training data

NOTE that the entity indices are inclusive i.e "Binsey" is [7, 7]. This differs from spaCy where the end index is exclusive (in this case spaCy would set the indices to [7, 8])

JSONL file:

{
  "ner": [
    [7, 7, "Q4914513", "Binsey"], 
    [11, 12, "Q19686", "River Thames"]
  ], 
  "relations": [
    {
      "head": {"mention": "Binsey", "position": [7, 7], "type": "Q4914513"},
      "tail": {"mention": "River Thames", "position": [11, 12], "type": "Q19686"}, 
      "relation_text": "located in or next to body of water"
    }
  ], 
  "tokenized_text": ["The", "race", "took", "place", "between", "Godstow", "and", "Binsey", "along", "the", "Upper", "River", "Thames", "."]
},
{
  "ner": [
    [9, 10, "Q4386693", "Legislative Assembly"], 
    [1, 3, "Q1848835", "Parliament of Victoria"]
  ], 
  "relations": [
    {
      "head": {"mention": "Legislative Assembly", "position": [9, 10], "type": "Q4386693"}, 
      "tail": {"mention": "Parliament of Victoria", "position": [1, 3], "type": "Q1848835"}, 
      "relation_text": "part of"
    }
  ], 
  "tokenized_text": ["The", "Parliament", "of", "Victoria", "consists", "of", "the", "lower", "house", "Legislative", "Assembly", ",", "the", "upper", "house", "Legislative", "Council", "and", "the", "Queen", "of", "Australia", "."]
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

glirel-0.1.3.tar.gz (34.9 kB view hashes)

Uploaded Source

Built Distribution

glirel-0.1.3-py3-none-any.whl (37.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page