gnnrl pipeline
Project description
GNN-RL-Model-Compression
GNN-RL Compression: Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning
Dependencies
Current code base is tested under following environment:
- Python 3.8
- PyTorch 1.8.0 (cuda 11.1)
- torchvision 0.7.0
- torch-geometric 1.6.1
Results on ImageNet
Models | FLOPs ratio | Top1 Acc. (%) | Acc. | Dataset |
---|---|---|---|---|
MobileNet-v1 | 40% FLOPs | 69.50 | -1.40 | ImageNet |
MobileNet-v1 | 70% FLOPs | 70.70 | -0.20 | ImageNet |
MobileNet-v2 | 58% FLOPs | 70.04 | -1.83 | ImageNet |
VGG-16 | 20% FLOPs | 70.992 | +0.49 | ImageNet |
ResNet-50 | 47% FLOPs | 74.28 | -1.82 | ImageNet |
ResNet-18 | 50% FLOPs | 68.66 | -1.10 | ImageNet |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gnnrl-1.0.9.tar.gz
(104.2 MB
view details)
Built Distribution
gnnrl-1.0.9-py3-none-any.whl
(104.3 MB
view details)
File details
Details for the file gnnrl-1.0.9.tar.gz
.
File metadata
- Download URL: gnnrl-1.0.9.tar.gz
- Upload date:
- Size: 104.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9acac7db9a16e690b38395b3f4e34562dd875b6c1af36487a9bc86cffbe07e5 |
|
MD5 | 5b93bc4cecee008f64fa6c4d969c9542 |
|
BLAKE2b-256 | 12dcf62fa957c8a2a48aa8f0d3a4b936f67b1cd410d39c67169f4cbc1caeab3d |
File details
Details for the file gnnrl-1.0.9-py3-none-any.whl
.
File metadata
- Download URL: gnnrl-1.0.9-py3-none-any.whl
- Upload date:
- Size: 104.3 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4910d757eff83dbac44eb404dd99abdf63160499fbe00fc6e64ca2195e8786a2 |
|
MD5 | f3bf635adc36508fb986606f15090d34 |
|
BLAKE2b-256 | e66a0a1d803ad0e8a8ded3b6022c1d038de103967cecb21ad9e69db8453daf3a |