Skip to main content

gnnrl pipeline

Project description

GNN-RL-Model-Compression

GNN-RL Compression: Topology-Aware Network Pruning using Multi-stage Graph Embedding and Reinforcement Learning

Dependencies

Current code base is tested under following environment:

  1. Python 3.8
  2. PyTorch 1.8.0 (cuda 11.1)
  3. torchvision 0.7.0
  4. torch-geometric 1.6.1

Results on ImageNet

Models FLOPs ratio Top1 Acc. (%) \delta Acc. Dataset
MobileNet-v1 40% FLOPs 69.50 -1.40 ImageNet
MobileNet-v1 70% FLOPs 70.70 -0.20 ImageNet
MobileNet-v2 58% FLOPs 70.04 -1.83 ImageNet
VGG-16 20% FLOPs 70.992 +0.49 ImageNet
ResNet-50 47% FLOPs 74.28 -1.82 ImageNet
ResNet-18 50% FLOPs 68.66 -1.10 ImageNet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gnnrl-1.0.9.tar.gz (104.2 MB view details)

Uploaded Source

Built Distribution

gnnrl-1.0.9-py3-none-any.whl (104.3 MB view details)

Uploaded Python 3

File details

Details for the file gnnrl-1.0.9.tar.gz.

File metadata

  • Download URL: gnnrl-1.0.9.tar.gz
  • Upload date:
  • Size: 104.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for gnnrl-1.0.9.tar.gz
Algorithm Hash digest
SHA256 c9acac7db9a16e690b38395b3f4e34562dd875b6c1af36487a9bc86cffbe07e5
MD5 5b93bc4cecee008f64fa6c4d969c9542
BLAKE2b-256 12dcf62fa957c8a2a48aa8f0d3a4b936f67b1cd410d39c67169f4cbc1caeab3d

See more details on using hashes here.

File details

Details for the file gnnrl-1.0.9-py3-none-any.whl.

File metadata

  • Download URL: gnnrl-1.0.9-py3-none-any.whl
  • Upload date:
  • Size: 104.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for gnnrl-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 4910d757eff83dbac44eb404dd99abdf63160499fbe00fc6e64ca2195e8786a2
MD5 f3bf635adc36508fb986606f15090d34
BLAKE2b-256 e66a0a1d803ad0e8a8ded3b6022c1d038de103967cecb21ad9e69db8453daf3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page