Skip to main content

Good Kiwi Common Library

Project description

good-common

A small set of common dependencies for Good Kiwi.

Dependency Provider

BaseProvider is a base class for creating fast_depends (so FastAPI and FastStream compatible) dependency providers.

class APIClient:
    def __init__(self, api_key: str):
        self.api_key = api_key

    def get(self, url: str):
        return f"GET {url} with {self.api_key}"

class APIClientProvider(BaseProvider[APIClient], APIClient):
    pass


from fast_depends import inject

@inject
def some_task(
    api_client: APIClient = APIClientProvider(api_key="1234"),
):
    return api_client.get("https://example.com")

Can also be used without fast_depends:

client = APIClientProvider(api_key="1234").get()

Override initializer to customize how the dependency class is initialized.

class APIClientProvider(BaseProvider[APIClient], APIClient):
    def initializer(
        self,
        cls_args: typing.Tuple[typing.Any, ...],  # args passed to the Provider
        cls_kwargs: typing.Dict[str, typing.Any],  # kwargs passed to the Provider
        fn_kwargs: typing.Dict[str, typing.Any],  # kwargs passed to the function at runtime
    ):
        return cls_args, {**cls_kwargs, **fn_kwargs}  # override the api_key with the one passed to the function


@inject
def some_task(
    api_key: str,
    api_client: APIClient = APIClientProvider(),
):
    return api_client.get("https://example.com")


some_task(api_key="5678")

Pipeline

Overview

The Pipeline library provides a flexible and efficient way to create and execute pipelines of components in Python. It supports both synchronous and asynchronous execution, type checking, parallel processing, and error handling.

Features

  • Create pipelines with multiple components that can accept multiple inputs and produce multiple outputs
  • Typed "channels" for passing data between components
  • Support for both synchronous and asynchronous components
  • Type checking for inputs and outputs using Python type annotations
  • Parallel execution of pipeline instances
  • Error handling with Result types
  • Function mapping for flexible component integration

Quick Start

from typing import Annotated
from good_common.pipeline import Pipeline, Attribute

def add(a: int, b: int) -> Annotated[int, Attribute("result")]:
    return a + b

def multiply(result: int, factor: int) -> Annotated[int, Attribute("result")]:
    return result * factor

# Create a pipeline
my_pipeline = Pipeline(add, multiply)

# Execute the pipeline
result = await my_pipeline(a=2, b=3, factor=4)
print(result.result)  # Output: 20

Usage

Creating a Pipeline

Use the Pipeline class to create a new pipeline:

from pipeline import Pipeline

my_pipeline = Pipeline(component1, component2, component3)

Defining Components

Components can be synchronous or asynchronous functions:

from typing import Annotated
from pipeline import Attribute

def sync_component(x: int) -> Annotated[int, Attribute("result")]:
    return x + 1

async def async_component(x: int) -> Annotated[int, Attribute("result")]:
    await asyncio.sleep(0.1)
    return x * 2

Executing a Pipeline

Execute a pipeline asynchronously:

result = await my_pipeline(x=5)
print(result.result)

Parallel Execution

Execute a pipeline with multiple inputs in parallel:

inputs = [{"a": 1, "b": 2, "factor": 2}, {"a": 2, "b": 3, "factor": 3}]
results = [result async for result in my_pipeline.execute(*inputs, max_workers=3)]

for result in results:
    if result.is_ok():
        print(result.unwrap().result)
    else:
        print(f"Error: {result.unwrap_err()}")

Error Handling

The pipeline handles errors gracefully in parallel execution:

def faulty_component(x: int) -> Annotated[int, Attribute("result")]:
    if x == 2:
        raise ValueError("Error on purpose!")
    return x + 1

pipeline = Pipeline(faulty_component)
inputs = [{"x": 1}, {"x": 2}, {"x": 3}]
results = [result async for result in pipeline.execute(*inputs)]

for result in results:
    if result.is_ok():
        print(result.unwrap().result)
    else:
        print(f"Error: {result.unwrap_err()}")

Function Mapping

Use function_mapper to adjust input parameter names:

from pipeline import function_mapper

def multiply_diff(difference: int, factor: int) -> Annotated[int, Attribute("result")]:
    return difference * factor

pipeline = Pipeline(subtract, function_mapper(multiply_diff, diff="difference"))

Advanced Features

  • Mixed synchronous and asynchronous components in a single pipeline
  • Custom output types with Attribute annotations
  • Flexible error handling in both single and parallel executions

Utilities

Various utility functions for common tasks.

Look at /tests/good_common/utilities for usage

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

good_common-0.1.12.1.tar.gz (51.3 kB view details)

Uploaded Source

Built Distribution

good_common-0.1.12.1-py3-none-any.whl (52.8 kB view details)

Uploaded Python 3

File details

Details for the file good_common-0.1.12.1.tar.gz.

File metadata

  • Download URL: good_common-0.1.12.1.tar.gz
  • Upload date:
  • Size: 51.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for good_common-0.1.12.1.tar.gz
Algorithm Hash digest
SHA256 91391d69c0e83b07124c652a231a95c244a9c877a197077adffb882cbeab2859
MD5 47970b675c6ecd3cd99d118ec3ee3230
BLAKE2b-256 9035211587874ec23235936e5ce9a0a685baa51e20ecef54beac0a8d9ccb34d1

See more details on using hashes here.

File details

Details for the file good_common-0.1.12.1-py3-none-any.whl.

File metadata

File hashes

Hashes for good_common-0.1.12.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a790c1b8408bc64093a424c5e48e003d4f53a2ff38d2da659503253c4b7ffae4
MD5 9ccbb5af77fedc97302fe7af4c753687
BLAKE2b-256 c0b3c76071bd1a3bb8465cd44763133d8ee1c1188932bb7be00eb441a84643a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page