Skip to main content

Didactic Gaussian processes in Jax.

Project description

GPJax's logo

codecov CodeFactor Documentation Status PyPI version DOI Downloads Slack Invite

Quickstart | Install guide | Documentation | Slack Community

GPJax aims to provide a low-level interface to Gaussian process (GP) models in Jax, structured to give researchers maximum flexibility in extending the code to suit their own needs. The idea is that the code should be as close as possible to the maths we write on paper when working with GP models.

Package support

GPJax was founded by Thomas Pinder. Today, the maintenance of GPJax is undertaken by Thomas Pinder and Daniel Dodd.

We would be delighted to receive contributions from interested individuals and groups. To learn how you can get involved, please read our guide for contributing. If you have any questions, we encourage you to open an issue. For broader conversations, such as best GP fitting practices or questions about the mathematics of GPs, we invite you to open a discussion.

Feel free to join our Slack Channel, where we can discuss the development of GPJax and broader support for Gaussian process modelling.

Supported methods and interfaces

Notebook examples

Guides for customisation

Conversion between .ipynb and .py

Above examples are stored in examples directory in the double percent (py:percent) format. Checkout jupytext using-cli for more info.

  • To convert example.py to example.ipynb, run:
jupytext --to notebook example.py
  • To convert example.ipynb to example.py, run:
jupytext --to py:percent example.ipynb

Simple example

Let us import some dependencies and simulate a toy dataset $\mathcal{D}$.

import gpjax as gpx
from jax import grad, jit
import jax.numpy as jnp
import jax.random as jr
import jaxkern as jk
import optax as ox

key = jr.PRNGKey(123)

f = lambda x: 10 * jnp.sin(x)

n = 50
x = jr.uniform(key=key, minval=-3.0, maxval=3.0, shape=(n,1)).sort()
y = f(x) + jr.normal(key, shape=(n,1))
D = gpx.Dataset(X=x, y=y)

The function of interest here, $f(\cdot)$, is sinusoidal, but our observations of it have been perturbed by Gaussian noise. We aim to utilise a Gaussian process to try and recover this latent function.

1. Constructing the prior and posterior

We begin by defining a zero-mean Gaussian process prior with a radial basis function kernel and assume the likelihood to be Gaussian.

prior = gpx.Prior(kernel = jk.RBF())
likelihood = gpx.Gaussian(num_datapoints = n)

Similar to how we would write on paper, the posterior is constructed by the product of our prior with our likelihood.

posterior = prior * likelihood

2. Learning hyperparameters

Equipped with the posterior, we seek to learn the model's hyperparameters through gradient-optimisation of the marginal log-likelihood. We this below, adding Jax's just-in-time (JIT) compilation to accelerate training.

mll = jit(posterior.marginal_log_likelihood(D, negative=True))

For purposes of optimisation, we'll use optax's Adam.

opt = ox.adam(learning_rate=1e-3)

We define an initial parameter state through the initialise callable.

parameter_state = gpx.initialise(posterior, key=key)

Finally, we run an optimisation loop using the Adam optimiser via the fit callable.

inference_state = gpx.fit(mll, parameter_state, opt, num_iters=500)

3. Making predictions

Using our learned hyperparameters, we can obtain the posterior distribution of the latent function at novel test points.

learned_params, _ = inference_state.unpack()
xtest = jnp.linspace(-3., 3., 100).reshape(-1, 1)

latent_distribution = posterior(learned_params, D)(xtest)
predictive_distribution = likelihood(learned_params, latent_distribution)

predictive_mean = predictive_distribution.mean()
predictive_cov = predictive_distribution.covariance()

Installation

Stable version

The latest stable version of GPJax can be installed via pip:

pip install gpjax

Note

We recommend you check your installation version:

python -c 'import gpjax; print(gpjax.__version__)'

Development version

Warning

This version is possibly unstable and may contain bugs.

Clone a copy of the repository to your local machine and run the setup configuration in development mode.

git clone https://github.com/JaxGaussianProcesses/GPJax.git
cd GPJax
python setup.py develop

Note

We advise you create virtual environment before installing:

conda create -n gpjax_experimental python=3.10.0
conda activate gpjax_experimental

and recommend you check your installation passes the supplied unit tests:

python -m pytest tests/

Citing GPJax

If you use GPJax in your research, please cite our JOSS paper.

@article{Pinder2022,
  doi = {10.21105/joss.04455},
  url = {https://doi.org/10.21105/joss.04455},
  year = {2022},
  publisher = {The Open Journal},
  volume = {7},
  number = {75},
  pages = {4455},
  author = {Thomas Pinder and Daniel Dodd},
  title = {GPJax: A Gaussian Process Framework in JAX},
  journal = {Journal of Open Source Software}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpjax-nightly-0.5.9.dev20230131.tar.gz (60.8 kB view details)

Uploaded Source

Built Distribution

gpjax_nightly-0.5.9.dev20230131-py3-none-any.whl (48.0 kB view details)

Uploaded Python 3

File details

Details for the file gpjax-nightly-0.5.9.dev20230131.tar.gz.

File metadata

File hashes

Hashes for gpjax-nightly-0.5.9.dev20230131.tar.gz
Algorithm Hash digest
SHA256 9e0b0d78b9728714b6273e2373421bd98bae910cf325a13864b3579b8ebb98e7
MD5 425fdf06797baf98948575f6b4a464ed
BLAKE2b-256 2eabccb1e279d5c93b200c1f9bfd4429418f3337c151ca67956e6ec094f5a438

See more details on using hashes here.

File details

Details for the file gpjax_nightly-0.5.9.dev20230131-py3-none-any.whl.

File metadata

File hashes

Hashes for gpjax_nightly-0.5.9.dev20230131-py3-none-any.whl
Algorithm Hash digest
SHA256 937939cd09fb6ad544a3b283a82d4fc60f7ee84c913d462c2f1ae27660d3fb50
MD5 6438a5b95df3f6dd4f657aa0d9ec46f6
BLAKE2b-256 669e2a368868d48a05c504214a419b132cd42fabeee7b7007e5cf21d1a7432fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page