Skip to main content

Interface between LLMs and your data

Project description

🗂️ LlamaIndex 🦙

LlamaIndex (GPT Index) is a data framework for your LLM application.

PyPI:

Documentation: https://gpt-index.readthedocs.io/.

Twitter: https://twitter.com/llama_index.

Discord: https://discord.gg/dGcwcsnxhU.

Ecosystem

🚀 Overview

NOTE: This README is not updated as frequently as the documentation. Please check out the documentation above for the latest updates!

Context

  • LLMs are a phenomenonal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data.
  • How do we best augment LLMs with our own private data?

We need a comprehensive toolkit to help perform this data augmentation for LLMs.

Proposed Solution

That's where LlamaIndex comes in. LlamaIndex is a "data framework" to help you build LLM apps. It provides the following tools:

  • Offers data connectors to ingest your existing data sources and data formats (APIs, PDFs, docs, SQL, etc.)
  • Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • Provides an advanced retrieval/query interface over your data: Feed in any LLM input prompt, get back retrieved context and knowledge-augmented output.
  • Allows easy integrations with your outer application framework (e.g. with LangChain, Flask, Docker, ChatGPT, anything else).

LlamaIndex provides tools for both beginner users and advanced users. Our high-level API allows beginner users to use LlamaIndex to ingest and query their data in 5 lines of code. Our lower-level APIs allow advanced users to customize and extend any module (data connectors, indices, retrievers, query engines, reranking modules), to fit their needs.

💡 Contributing

Interested in contributing? See our Contribution Guide for more details.

📄 Documentation

Full documentation can be found here: https://gpt-index.readthedocs.io/en/latest/.

Please check it out for the most up-to-date tutorials, how-to guides, references, and other resources!

💻 Example Usage

pip install llama-index

Examples are in the examples folder. Indices are in the indices folder (see list of indices below).

To build a simple vector store index:

import os
os.environ["OPENAI_API_KEY"] = 'YOUR_OPENAI_API_KEY'

from llama_index import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader('data').load_data()
index = VectorStoreIndex.from_documents(documents)

To query:

query_engine = index.as_query_engine()
query_engine.query("<question_text>?")

By default, data is stored in-memory. To persist to disk (under ./storage):

index.storage_context.persist()

To reload from disk:

from llama_index import StorageContext, load_index_from_storage

# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir='./storage')
# load index
index = load_index_from_storage(storage_context)

🔧 Dependencies

The main third-party package requirements are tiktoken, openai, and langchain.

All requirements should be contained within the setup.py file. To run the package locally without building the wheel, simply run pip install -r requirements.txt.

📖 Citation

Reference to cite if you use LlamaIndex in a paper:

@software{Liu_LlamaIndex_2022,
author = {Liu, Jerry},
doi = {10.5281/zenodo.1234},
month = {11},
title = {{LlamaIndex}},
url = {https://github.com/jerryjliu/llama_index},
year = {2022}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpt_index-0.6.34.post1.tar.gz (342.3 kB view details)

Uploaded Source

Built Distribution

gpt_index-0.6.34.post1-py3-none-any.whl (541.9 kB view details)

Uploaded Python 3

File details

Details for the file gpt_index-0.6.34.post1.tar.gz.

File metadata

  • Download URL: gpt_index-0.6.34.post1.tar.gz
  • Upload date:
  • Size: 342.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for gpt_index-0.6.34.post1.tar.gz
Algorithm Hash digest
SHA256 0dd37b95bb12729043e2ac3a991686b67d6476f2072bea6dca5a4db4d07ac38b
MD5 d984c20d4ff1629e826379f82e3b1756
BLAKE2b-256 45a80c4e8fb7de13bf4ec95d30e07d84bf67be5b1620b721a4466b8c6568b90c

See more details on using hashes here.

File details

Details for the file gpt_index-0.6.34.post1-py3-none-any.whl.

File metadata

File hashes

Hashes for gpt_index-0.6.34.post1-py3-none-any.whl
Algorithm Hash digest
SHA256 d9e7ff4893023ed183be4055725a6373a4e2bc82e9081a279b4040c32cfeed51
MD5 e26c64dc7f813a5231de93da4e23560d
BLAKE2b-256 5ffac0aaffb1812b5ed61d31c4843a80fa4f845fd31d31e4df5346e5ed3f2a2c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page