Skip to main content

Encode particle physics data onto graph structures.

Project description

graphicle

Code style: black

Utilities for representing high energy physics data as graphs / networks.

Installation

pip install graphicle

Features

Object oriented interface to track-level particle data for collider physics, with routines for constructing and performing calculations over graph-structured data.

Provides data structures for:

  • 4-momenta
  • PDG codes
  • Particle status codes
  • Color codes
  • Helicity / spin polarisation data
  • COO adjacency lists (for graph-structured data)
>>> import graphicle as gcl

# query pdg records
>>> pdgs = gcl.PdgArray([1, 3, 6, -6, 25, 2212])
>>> pdgs.name
['d', 's', 't', 't~', 'H0', 'p'], dtype=object)
>>> pdgs.charge
array([-0.33333333, -0.33333333,  0.66666667, -0.66666667,  0.        ,
        1.        ])

# extract information from momentum data
>>> pmu_data
array([( 1.95057378e-02,  3.12923088e-02,  3.53556064e-01, 3.55473730e-01),
       ( 2.60116947e+01, -3.63466398e+00, -3.33718718e+00, 2.64755711e+01),
       ( 5.91884324e-05, -7.62144267e-06, -6.76385314e-06, 6.00591927e-05),
       ( 2.82881807e+01,  4.32224823e+00,  2.14691072e+02, 2.16589841e+02),
       (-8.73280642e-02, -6.48540201e-02,  3.73744945e-01, 6.28679140e-01),
       ( 1.06204871e-01,  5.78888984e-01, -1.44899819e+02, 1.44901081e+02)],
      dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8'), ('e', '<f8')])
>>> pmu = gcl.MomentumArray(pmu_data)
>>> pmu.pt
array([3.68738715e-02, 2.62644064e+01, 5.96771055e-05, 2.86164812e+01,
       1.08776076e-01, 5.88550704e-01])
>>> pmu.mass
array([-7.45058060e-09,  5.11000489e-04,  9.09494702e-13,  5.10991478e-04,
        4.93680000e-01,  1.39570000e-01])
>>> pmu.eta
array([ 2.95639434, -0.12672178, -0.11309956,  2.71277683,  1.94796328,
       -6.1992861 ])
>>> pmu.phi
array([ 1.01339184, -0.138833  , -0.12806107,  0.15162078, -2.5028134 ,
        1.38935084])

# calculate the inter-particle distances
>>> pmu.delta_R(pmu)
array([[0.        , 3.2913868 , 3.27485993, 0.89554388, 2.94501476,
        9.16339617],
       [3.2913868 , 0.        , 0.01736661, 2.85431528, 3.14526968,
        6.26189934],
       [3.27485993, 0.01736661, 0.        , 2.83968296, 3.14442819,
        6.27249595],
       [0.89554388, 2.85431528, 2.83968296, 0.        , 2.76241933,
        8.99760198],
       [2.94501476, 3.14526968, 3.14442819, 2.76241933, 0.        ,
        8.4908571 ],
       [9.16339617, 6.26189934, 6.27249595, 8.99760198, 8.4908571 ,
        0.        ]])

Graphicle really shines with its composite data structures. These can be used to filter and query heterogeneous particle data records simultaneously, either using user provided boolean masks, or MaskArrays produced with routines in the select module. Additionally, routines in the calculate and transform modules take composite data structures to standardise useful calculations which blends multiple particle data records.

To see an example, let's generate a collision event using Pythia, wrapped with showerpipe.

>>> from showerpipe.generator import PythiaGenerator
...
... lhe_path = "https://zenodo.org/record/6034610/files/unweighted_events.lhe.gz"
... gen = PythiaGenerator("pythia-settings.cmnd", lhe_path)
>>> for event in gen:
...     graph = gcl.Graphicle.from_numpy(
...         pmu=event.pmu,
...         pdg=event.pdg,
...         color=event.color,
...         helicity=event.helicity,
...         status=event.status,
...         final=event.final,
...         edges=event.edges
...         )
...     break

>>> graph.pdg
PdgArray(data=array([2212, 2212,   21, ...,   22,   22,   22], dtype=int32))
>>> graph.edges
array([(   0,   -1), (   0,   -2), (  -6,   -3), ..., (-635, 1211),
       (-636, 1212), (-636, 1213)], dtype=[('in', '<i4'), ('out', '<i4')])
# select all descendants of the W bosons from the hard process
>>> W_mask = gcl.select.hard_descendants(graph, {24})
>>> W_mask
MaskGroup(mask_arrays=["W+", "W-"], agg_op=OR)
# filter data record to get final state W+ boson descendants
>>> Wp_desc = graph[W_mask["W+"] & graph.final]
>>> Wp_desc.pdg
PdgArray(data=array([ 321, -211, -211,  321, -211, -321,  211,  211,  -13,   14,   22,
         22,  211, -211,   22,   22,   22,   22,   22,  211, -211,   22,
         22,   22,   22,  130,   22,   22], dtype=int32))
>>> Wp_desc
Graphicle(particles=ParticleSet(
PdgArray(data=array([ 321, -211, -211,  321, -211, -321,  211,  211,  -13,   14,   22,
         22,  211, -211,   22,   22,   22,   22,   22,  211, -211,   22,
         22,   22,   22,  130,   22,   22], dtype=int32)),
MomentumArray(data=array([(-1.41648688e+00, -2.6653416 , -2.25487483e-01, 3.06676466e+00),
       ( 5.26078595e-01,  0.11325339, -1.85115863e+00, 1.93283550e+00),
       ( 2.92112800e+00,  2.19611382, -9.04351574e+00, 9.75502749e+00),
       ( 1.70197168e+01,  9.65578074, -4.51506419e+01, 4.92110663e+01),
       (-5.70145778e-01, -1.02762625,  1.35915720e-01, 1.19123247e+00),
       (-1.70566595e-01,  0.02598637, -1.34183423e-01, 5.39901276e-01),
       (-1.80439204e-01, -0.51409054,  1.82537117e-01, 5.91309546e-01),
       ( 1.63182285e-01,  0.13788241, -3.17043212e-01, 4.06984277e-01),
       (-2.45719652e+00, -4.10607321,  3.31426006e-01, 4.79777648e+00),
       (-1.08820465e+00, -1.84333164, -1.69547133e-01, 2.14727900e+00),
       (-4.92718715e-01, -0.87998859,  1.11984849e-01, 1.01473753e+00),
       ( 8.90383374e-03, -0.01019132,  4.32869417e-04, 1.35398920e-02),
       (-6.11110402e-01, -0.74064239,  5.47809445e-02, 9.71847628e-01),
       (-2.13853648e-01, -0.34188095, -1.89837677e-01, 4.67048281e-01),
       (-3.57251890e-01, -0.42033772, -1.39634796e-01, 5.69043576e-01),
       (-2.41744268e-01,  0.16830106, -1.53611666e-02, 2.94960174e-01),
       (-8.27775995e-01, -0.4279882 ,  1.03575995e-01, 9.37611318e-01),
       (-3.44298782e-05,  0.14091286, -4.51929191e-02, 1.47982551e-01),
       ( 6.20276481e-02,  0.12552564, -1.96113732e-01, 2.40966203e-01),
       ( 6.32168629e+00,  4.5683574 , -1.69888394e+01, 1.86942171e+01),
       ( 8.77035615e-01,  0.4961944 , -2.38422385e+00, 2.59218122e+00),
       (-1.12781117e+00, -1.41626175, -6.02316244e-02, 1.81145887e+00),
       (-1.52146265e+00, -1.67738354, -3.45502640e-02, 2.26487480e+00),
       ( 1.82715744e+00,  0.28701504, -3.76239153e+00, 4.19243031e+00),
       ( 4.77818092e-01,  0.02881935, -8.63039360e-01, 9.86903046e-01),
       (-3.03560171e+00, -2.76703663,  9.57894838e-02, 4.13861822e+00),
       ( 8.99971241e-01,  0.6677899 , -2.26276823e+00, 2.52507657e+00),
       ( 1.42885287e+00,  0.86196369, -3.46387012e+00, 3.84486646e+00)],
      dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8'), ('e', '<f8')])),
ColorArray(data=array([(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
       (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
       (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),
       (0, 0), (0, 0), (0, 0), (0, 0)],
      dtype=[('color', '<i4'), ('anticolor', '<i4')])),
HelicityArray(data=array([9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
       9, 9, 9, 9, 9, 9], dtype=int16)),
StatusArray(data=array([83, 84, 84, 84, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91,
       91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91], dtype=int16)),
MaskArray(data=array([ True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True]))
), adj=AdjacencyList(_data=array([(-343,  650), (-343,  651), (-343,  652), (-343,  653),
       (-345,  743), (-349,  744), (-349,  745), (-350,  746),
       (-344,  863), (-344,  864), (-346,  865), (-346,  866),
       (-347,  867), (-347,  868), (-347,  869), (-348,  870),
       (-348,  871), (-351,  872), (-351,  873), (-352,  874),
       (-352,  875), (-518, 1012), (-518, 1013), (-519, 1014),
       (-519, 1015), (-571, 1097), (-572, 1098), (-572, 1099)],
      dtype=[('in', '<i4'), ('out', '<i4')]), weights=array([], dtype=float64)))

# calculate the mass of the W boson from its final state constituents
>>> gcl.calculate.combined_mass(Wp_desc.pmu)
80.419002446

More information on the API is available in the documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphicle-0.1.7.tar.gz (34.1 kB view details)

Uploaded Source

File details

Details for the file graphicle-0.1.7.tar.gz.

File metadata

  • Download URL: graphicle-0.1.7.tar.gz
  • Upload date:
  • Size: 34.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for graphicle-0.1.7.tar.gz
Algorithm Hash digest
SHA256 c4eb7b4af28db003cc7781b7b7a4aed8fc630eb9476cc651ed847900ad6d2987
MD5 d5ed5aaab3b8bfead56f5ee3cc02670b
BLAKE2b-256 75767778f939752ae88ce49a6fddf04e79622977bb74b72ba3e2b2c692c2fb14

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page