Skip to main content

Grism redshift and line analysis software

Project description

examples/grizli_logo.png https://github.com/gbrammer/grizli/actions/workflows/python-package.yml/badge.svg https://badge.fury.io/py/grizli.svg https://zenodo.org/badge/DOI/10.5281/zenodo.1146904.svg Documentation Status

Grism redshift & line analysis software for space-based slitless spectroscopy

What is grizli?

This early release of grizli is intended to demonstrate and demystify some general techniques for manipulating HST slitless spectroscopic observations, providing software kernels to address questions such as

“How does the WFC3/IR G141 grism disperse the spectrum of a star/galaxy at pixel position (x,y) in my F140W direct image?”.

Much of the background related to this question in the context of the currently available software tools was discussed in a document by Brammer, Pirzkal and Ryan (2014). Along with a detailed description of the format of the configuration files originally developed for the aXe software, we provided a compact Python script to address exactly the question above and strip away all of the many layers of bookkeeping, file-IO, etc. in existing analysis pipelines such as aXe (Kummel et al. 2009) and “THREEDHST” (Brammer et al. 2012, Momcheva et al. 2015). In fact, that relatively simple script serves as the low-level kernel for the way grizli computes the grism dispersion.

Eventually, grizli is intended to encourage and enable general users to move away from simple “data reduction” (e.g., extracting a 1D spectrum of a single object akin to standard slit spectroscopy) and toward more quantitative and comprehensive modeling and fitting of slitless spectroscopic observations, which typically involve overlapping spectra of hundreds or thousands of objects in exposures taken with one or more separate grisms and at multiple dispersion position angles. The products of this type of analysis will be complete and uniform characterization of the spectral properties (e.g., continuum shape, redshifts, line fluxes) of all objects in a given exposure taken in the slitless spectroscopic mode.

Installation & Documentation

Installation instructions and documentation (in progress) can be found at http://grizli.readthedocs.io.

Working Examples

The following are IPython/jupyter notebooks demonstrating various aspects of the code functionality. They render statically in the GitHub pages or can be run locally after cloning and installing the software repository.

  • Grizli-Pipeline : End-to-end processing of WFC3/IR data.

    1. Query the MAST archive and automatically download files

    2. Image pre-processing (astrometric alignment & background subtraction)

    3. Field contamination modeling

    4. Spectral extractions

    5. Redshift & emission line fits (multiple grisms)

  • Fit-with-Photometry : Demonstrate simultaneous fitting with grism spectra + ancillary photometry

  • NewSpectrumFits: Demonstration of the lower-level fitting tools

    1. Unify the fitting tools between the stacked and exposure-level 2D cutouts (“beams”).

  • Fit-Optimization (09.14.17): Custom fitting (hasn’t been tested recently)

    1. Demonstrate some of the workings behind the fitting wrapper scripts by defining custom model functions with parameters to optimize.

The notebooks below are deprecated and haven’t been tested against the master branch since perhaps late 2017.

  • Grizli Demo: Simple interaction with WFC3/IR spectra

  • Basic-Sim (5.5.16): Basic simulations based on single WFC3/IR grism and direct exposures

  • multimission-simulation (5.11.16):

    1. Demonstration of more advanced simulation techniques using deep image mosaics and external catalogs/segmentation images as reference.

    2. Provide a comparison between dispersed spectra from WFC3/G141, JWST/NIRISS and WFIRST.

  • WFC3IR_Reduction (9.6.16): End-to-end processing of WFC3/IR data.

    1. Pre-processing of files downloaded from MAST (astrometric alignment & background subtraction)

    2. Field contamination modeling

    3. Spectral extractions

    4. Redshift & emission line fits (multiple grisms)

  • NIRISS-simulation (11.11.16): Simulation and analysis of JWST/NIRISS observations

    1. Simulate NIRISS spectra in three blocking filters and two orients offset by 90 degrees.

    2. Simulation field taken from the Hubble WFC3/IR Ultra-Deep Field, with the WFC3 F140W image as the morphological reference and photo-z templates taken as the spectral models.

    3. Extract spectra and fit redshifts and emission lines from the combined six exposures.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grizli-1.8.4.tar.gz (8.0 MB view details)

Uploaded Source

Built Distributions

grizli-1.8.4-cp311-cp311-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

grizli-1.8.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8.4-cp311-cp311-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

grizli-1.8.4-cp310-cp310-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

grizli-1.8.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8.4-cp310-cp310-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

grizli-1.8.4-cp39-cp39-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

grizli-1.8.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8.4-cp39-cp39-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

grizli-1.8.4-cp38-cp38-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

grizli-1.8.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8.4-cp38-cp38-macosx_10_9_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

grizli-1.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

grizli-1.8.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8.4-cp37-cp37m-macosx_10_9_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file grizli-1.8.4.tar.gz.

File metadata

  • Download URL: grizli-1.8.4.tar.gz
  • Upload date:
  • Size: 8.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for grizli-1.8.4.tar.gz
Algorithm Hash digest
SHA256 ead36bbf17da2c83792a4463b2868e4db70c14a1feb8d02fbb35eb9b40ec278a
MD5 859286d7de36c9523750b3c8d731b100
BLAKE2b-256 ea8e8cbbfc0d70fda271cd9e5ceecfbe9a34f8695eac836fdb08f4680ffaf251

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 03cd8210ca20006b6ae12f1fc76af3f6d7da854d9e172fafdd9436aef637b79e
MD5 bf1eac0e488e1e09c7d487c10e80dc24
BLAKE2b-256 e85825aaf0f6570c052aa6fa7bca49a373c4291057d800424b8534b9c529509d

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25be6eb52c4a32ef02c73b7db3374d5781b3d8e3934376698567f164ff44b92c
MD5 9f1cbd6290a10bbffce0ed8c5ac1c6f6
BLAKE2b-256 1656fd5ddf01d420fba08d7e0ebcfad61fd1a7fdea44ee6129a4c3b355ca2da8

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab4e6c21c76eb386ef29a1c21b3b1f1847149a270f619ac03a60cbd648cf57be
MD5 44fc029de34c61e603c7f3fd62389014
BLAKE2b-256 f847f13950b76421132b44473c30fd3b1c47b85318a1c1da6ca1d5873e4efd0e

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f4b35af4f47abe252960232164b9fd036ec4777a1b2b64931c5dec012af6d8e2
MD5 3868f2cc836a83fad161072d43b1895f
BLAKE2b-256 26b3f0734028b003734182dbdd3ad084513f57a78da837a3aaae4d6137878519

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16b7a915832a3f2cf1a392caf54e6a0d0403c8d71f117816daeaf9ee6042184e
MD5 bb226807e78c7d4e22eae62fa14b757d
BLAKE2b-256 52646d524da54f69478fa3ccef67142ac802c544d2a43bb250d3547e7a57b7a1

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bab45cf2fba2494f0bf8ff31007c36a211b7eb9debaf8c551086bcb2411ecbe3
MD5 9d0cb7242725cfd519985288faa14fcb
BLAKE2b-256 de6832d36e918ad067dbb3153bf78052c5011125952d76ea8886ce5702865a7b

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c7ae772d9d4ed689bc05ffd8d0da94ed092165892345c44aa7c84892fd9f5224
MD5 abe2b70b2f80bd947a5a4f7de3b5708d
BLAKE2b-256 d2c4fe798d85b33979d8d9f3d6b2a04d936f21e08d59b035d31d22ec20411743

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec3b73ba3eb179a789e27b8e30a5a0240128d4c80de8bad7675bbb193fefc943
MD5 fcf9583eb883f4f6dcdec633aa216d3e
BLAKE2b-256 c8b0c3e0b4eb9b7a29a25023289683aa5ae039ee9e3d43d6be1daddb5b1e02e9

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aea65c84527bc706d6d61ff5abf604582bb04de5fb50d05c1effad4fe49ac0f5
MD5 fff46364c5a7e25b71c15a6c820162c3
BLAKE2b-256 d47c7b5491c7b5b88f4e323e51891012516049c169b7d6caa37e7f03ba6ae0b2

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fccfbf92ee9a4e798030299e05f5e6f31318158c97ad6cd230abcb6c92c6e5b4
MD5 0f9dc0a80037b2262e1a8df7434d6f8b
BLAKE2b-256 52d69cb54e10dcfca351c55349bab6983d012986b8aee6778596568d36286b2d

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5ee84e8a5d3d85d39506ce04949065ede6be859c10b206f2a06ee817118b013
MD5 9321ae86ead98acc08a09015221db4d6
BLAKE2b-256 eaec90353b8e04a6c5db8cfc0cd117deee262c05762d4aad86452c1d24316538

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 99a2c901d72c657d19950b69fb7d9fb9a96470ee4aedb0cb4759905c41732b94
MD5 54c09c0b5a1c4f89f9cb495d5978f88d
BLAKE2b-256 bcff38da41428f3bf6c03b4dec4bac5f1d46fa7a22ad6fde9837bd02ca78b92b

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0d9d9454fdefea0ef7154c19d8874ee5f585545b27ea737a79c71971475d8fef
MD5 7875966e639e74411cd8cea8c265ca8e
BLAKE2b-256 45e22e618c9f9c898b972655d67b049f14989c65684d45326eef5fc4f7273149

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b22c74f48c8fdfec950cc4bee8e406c35c10edda4cf9c5ef066df048e9c97d4
MD5 2d0e57368469c7284d4f09fd58db96bd
BLAKE2b-256 3ce1adf9ca1ee856423c40c817f60a59ef60322d648fdfe6ec0b3d995d61aefc

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb6700a0ee881fae6ae4bce6d381e3b1a37ab5c89ef134cef422e1da0ac2770e
MD5 645b5704129ca98586556246a4f214ee
BLAKE2b-256 d98c37bee542c186b53ad2e5d5d0e07e3189a5518e1d4ae32108b6857aa3183f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page