Skip to main content

A Fisher-Based Software for Parameter Estimation from Gravitational Waves

Project description

GWDALI Software

Software developed to perform parameter estimations of gravitational waves from compact objects coalescence (CBC) via Gaussian and Beyond-Gaussian approximation of GW likelihood. The Gaussian approximation is related to Fisher Matrix, from which it is direct to compute the covariance matrix by inverting the Fisher Matrix [1]. GWDALI also deals with the not-so-infrequent cases of Fisher Matrix with zero-determinant. The Beyond-Gaussian approach uses the Derivative Approximation for LIkelihoods (DALI) algorithm proposed in [2] and applied to gravitational waves in [3], whose model parameter uncertainties are estimated via Monte Carlo sampling but less costly than using the GW likelihood with no approximation.

Installation

To install the software run the command below:

$ pip install gwdali

Documentation

Available in https://gwdali.readthedocs.io/en/latest/

Usage [example]

import numpy as np
#-------------------
import GWDALI as gw
#-------------------
from tqdm import trange
from astropy.cosmology import FlatLambdaCDM
cosmo = FlatLambdaCDM(70,0.3)

rad = np.pi/180 ; deg = 1./rad
#--------------------------------------------
# Detector, position and orientation
#--------------------------------------------
FreeParams = ['DL','iota','psi','phi_coal']

# Cosmic Explorer:
det0 = {"name":"CE","lon":-119,"lat":46,"rot":45,"shape":90}
# Einstein Telescope:
det1 = {"name":"ET","lon":10,"lat":43,"rot":0,"shape":60}
det2 = {"name":"ET","lon":10,"lat":43,"rot":120,"shape":60}
det3 = {"name":"ET","lon":10,"lat":43,"rot":-120,"shape":60}

#------------------------------------------------------
# Setting Injections (Single detection)
#------------------------------------------------------
z = 0.1 # Redshift

params = {}
params['m1']  = 1.3*(1+z) # mass of the first object [solar mass]
params['m2']  = 1.5*(1+z) # mass of the second object [solar mass]
params['z']   = z
params['RA']       = np.random.uniform(-180,180)
params['Dec']      = (np.pi/2-np.arccos(np.random.uniform(-1,1)))*deg
params['DL']       = cosmo.luminosity_distance(z).value/1.e3 # Gpc
params['iota']     = np.random.uniform(0,np.pi)          # Inclination angle (rad)
params['psi']      = np.random.uniform(-np.pi,np.pi) # Polarization angle (rad)
params['t_coal']   = 0  # Coalescence time
params['phi_coal'] = 0  # Coalescence phase
# Spins:
params['sx1'] = 0
params['sy1'] = 0
params['sz1'] = 0
params['sx2'] = 0
params['sy2'] = 0
params['sz2'] = 0

#----------------------------------------------------------------------
# "approximant" options:
#               [Leading_Order, TaylorF2_py, ...] or any lal approximant
#----------------------------------------------------------------------
# "dali_method" options:
#               [Fisher, Fisher_Sampling, Doublet, Triplet, Standard]
#----------------------------------------------------------------------
res = gw.GWDALI( Detection_Dict = params,
                 FreeParams     = FreeParams,
                 detectors      = [det0,det1,det2,det3], # Einstein Telescope + Cosmic Explorer
                 approximant    = 'TaylorF2_py',
                 dali_method    = 'Doublet',
                 sampler_method = 'nestle', # Same as Bilby sampling method
                 save_fisher    = False,
                 save_cov       = False,
                 plot_corner    = False,
                 save_samples   = False,
                 hide_info      = True,
                 index          = 1,
                 rcond          = 1.e-4,
                 npoints=300) # points for "nested sampling" or steps/walkers for "MCMC"

Samples = res['Samples']
Fisher  = res['Fisher']
CovFish = res['CovFisher']
Cov     = res['Covariance']
Rec     = res['Recovery']
Err     = res['Error']
SNR     = res['SNR']

References

[1] L. S. Finn and D. F. Chernoff, “Observing binary inspiral in gravitational radiation: One interferometer,” Phys. Rev. D, vol. 47, pp. 2198–2219, 1993.

[2] E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of gaussianity: forecasting with higher order fisher matrices,” Monthly Notices of the Royal Astronomical Society, vol. 441, no. 2, pp. 1831–1840, 2014.

[3] Z. Wang, C. Liu, J. Zhao, and L. Shao, “Extending the fisher information matrix in gravitational-wave data analysis,” arXiv preprint arXiv:2203.02670, 2022.

Authors

  • Josiel Mendonça Soares de Souza (developer)
  • Riccardo Sturani (collaborator)

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwdali-0.1.3.tar.gz (153.1 kB view details)

Uploaded Source

Built Distribution

gwdali-0.1.3-py3-none-any.whl (154.9 kB view details)

Uploaded Python 3

File details

Details for the file gwdali-0.1.3.tar.gz.

File metadata

  • Download URL: gwdali-0.1.3.tar.gz
  • Upload date:
  • Size: 153.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gwdali-0.1.3.tar.gz
Algorithm Hash digest
SHA256 3ddd7b5384819e3e11dcaf40ad825e56b6870c5bf4f4a61d15a6e2c173fe95b6
MD5 2e3f22051fbf620ba1a17437258d5bef
BLAKE2b-256 06e75c47dcb2bb71c23a8941507245cbef0ec27a1d33113b7382e3fffc25941a

See more details on using hashes here.

File details

Details for the file gwdali-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: gwdali-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 154.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gwdali-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 acfb72412aa05cbf4083df857684ae6afc8a3be0f11c50fb52485bc302177d0c
MD5 d1104edc48c2509edc4471d1a0e72fee
BLAKE2b-256 af0a426cc46574f5c29113b7954b82221cc7dbd4580712465f9cd8ea12b9a628

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page