Sparkling Water integrates H2O's Fast Scalable Machine Learning with Spark
Project description
This package contains complete functionality for training and scoring Sparkling Water/H20-3 MOJO models. It’s also possible to use this package for scoring with Driverless AI MOJO models.
PySparkling Documentation is hosted at our documentation page:
For Spark 3.2 - http://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/pysparkling.html
For Spark 3.1 - http://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/pysparkling.html
For Spark 3.0 - http://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/pysparkling.html
For Spark 2.4 - http://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/pysparkling.html
For Spark 2.3 - http://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/pysparkling.html
For Spark 2.2 - http://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/pysparkling.html
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for h2o_pysparkling_3.0-3.36.0.4-1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c37af1ac35d498d1d3b75b3c32ee2b1032fd8a426fce966bad0191afe9dc46d |
|
MD5 | 9a02e2b8c2a66268601844713af02b60 |
|
BLAKE2b-256 | 2968c865e32b974946c562abced3215bdc47fbd8341cd0cac64c9be5733c2ec9 |