Sparkling Water integrates H2O's Fast Scalable Machine Learning with Spark
Project description
This package contains complete functionality for training and scoring Sparkling Water/H2O-3 MOJO models. It’s also possible to use this package for scoring with Driverless AI MOJO models.
PySparkling Documentation is hosted at our documentation page:
For Spark 3.3 - http://docs.h2o.ai/sparkling-water/3.3/latest-stable/doc/pysparkling.html
For Spark 3.2 - http://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/pysparkling.html
For Spark 3.1 - http://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/pysparkling.html
For Spark 3.0 - http://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/pysparkling.html
For Spark 2.4 - http://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/pysparkling.html
For Spark 2.3 - http://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/pysparkling.html
For Spark 2.2 - http://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/pysparkling.html
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for h2o_pysparkling_3.0-3.36.1.4-1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 03cbcbc9c84bdb65a0ddf47b1fc143f0b2d04163daeb36d6f6da13225194f9ff |
|
MD5 | f2a11f696323a23bf8c4f24519b3a8d2 |
|
BLAKE2b-256 | 777a2732c3cae88b14ee1988c67edc22a9ea6f1c4098f2d4bd079cbfef34bcc8 |