Sparkling Water integrates H2O's Fast Scalable Machine Learning with Spark
Project description
This package contains complete functionality for training and scoring Sparkling Water/H2O-3 MOJO models. It’s also possible to use this package for scoring with Driverless AI MOJO models.
PySparkling Documentation is hosted at our documentation page:
For Spark 3.4 - http://docs.h2o.ai/sparkling-water/3.4/latest-stable/doc/pysparkling.html
For Spark 3.3 - http://docs.h2o.ai/sparkling-water/3.3/latest-stable/doc/pysparkling.html
For Spark 3.2 - http://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/pysparkling.html
For Spark 3.1 - http://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/pysparkling.html
For Spark 3.0 - http://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/pysparkling.html
For Spark 2.4 - http://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/pysparkling.html
For Spark 2.3 - http://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/pysparkling.html
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for h2o_pysparkling_3.0-3.42.0.3.post1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 695bb52e4ee3da4829b06bde9b88bf7970511917f6863e6a74884dd366f98f28 |
|
MD5 | b7e27f0e13d2952adf007210c2ebc791 |
|
BLAKE2b-256 | 954367fc3382b1f8f34741d89225b98b97f1e85112c7893cfb236bf1cdeb4c20 |