Sparkling Water integrates H2O's Fast Scalable Machine Learning with Spark
Project description
This package contains complete functionality for training and scoring Sparkling Water/H2O-3 MOJO models. It’s also possible to use this package for scoring with Driverless AI MOJO models.
PySparkling Documentation is hosted at our documentation page:
For Spark 3.5 - http://docs.h2o.ai/sparkling-water/3.5/latest-stable/doc/pysparkling.html
For Spark 3.4 - http://docs.h2o.ai/sparkling-water/3.4/latest-stable/doc/pysparkling.html
For Spark 3.3 - http://docs.h2o.ai/sparkling-water/3.3/latest-stable/doc/pysparkling.html
For Spark 3.2 - http://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/pysparkling.html
For Spark 3.1 - http://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/pysparkling.html
For Spark 3.0 - http://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/pysparkling.html
For Spark 2.4 - http://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/pysparkling.html
For Spark 2.3 - http://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/pysparkling.html
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for h2o_pysparkling_3.1-3.46.0.4.post1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | a70b978e6faee8b0e427fb0293697ca26f9f91f0f69d29e9d90dd08b3069de79 |
|
MD5 | cf82774640b6805ee1f73f6639c25d02 |
|
BLAKE2b-256 | d60ed83fcf9cbcbda7d721a391f60fb1eb658e46812af784d65f076b90d7087b |