Sparkling Water integrates H2O's Fast Scalable Machine Learning with Spark
Project description
This package contains just functionality for scoring with Sparkling Water, H20-3 and Driverless AI MOJO models.
Documentation describing scoring with H2O-3 MOJO models is located at:
For Spark 3.2 - https://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/deployment/load_mojo.html
For Spark 3.1 - https://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/deployment/load_mojo.html
For Spark 3.0 - https://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/deployment/load_mojo.html
For Spark 2.4 - https://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/deployment/load_mojo.html
For Spark 2.3 - https://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/deployment/load_mojo.html
For Spark 2.2 - https://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/deployment/load_mojo.html
Documentation describing scoring with Driverless AI MOJO models is located at:
For Spark 3.2 - https://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 3.1 - https://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 3.0 - https://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.4 - https://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.3 - https://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.2 - https://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/deployment/load_mojo_pipeline.html
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for h2o_pysparkling_scoring_2.3-3.36.0.3-1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f56b5014bec2c642f99633ec38440d70ee21270708c2c314c3482e8e9f2663b |
|
MD5 | 50373cc5840724b965fd84ab8b30d6df |
|
BLAKE2b-256 | 4ca9dad2ce17182ef97ff0e786e6fdcddeea4f4e7cf813d10b248cc9133c8756 |