Sparkling Water integrates H2O's Fast Scalable Machine Learning with Spark
Project description
This package contains just functionality for scoring with Sparkling Water, H20-3 and Driverless AI MOJO models.
Documentation describing scoring with H2O-3 MOJO models is located at:
For Spark 3.2 - https://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/deployment/load_mojo.html
For Spark 3.1 - https://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/deployment/load_mojo.html
For Spark 3.0 - https://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/deployment/load_mojo.html
For Spark 2.4 - https://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/deployment/load_mojo.html
For Spark 2.3 - https://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/deployment/load_mojo.html
For Spark 2.2 - https://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/deployment/load_mojo.html
Documentation describing scoring with Driverless AI MOJO models is located at:
For Spark 3.2 - https://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 3.1 - https://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 3.0 - https://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.4 - https://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.3 - https://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.2 - https://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/deployment/load_mojo_pipeline.html
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for h2o_pysparkling_scoring_3.0-3.36.0.4-1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | b3ae9b28bdb7b6b5940a4b46d151218fc2b314f5816e289edd77f8696c7fafa7 |
|
MD5 | c60b274af75e1af2397d52c8a5a568eb |
|
BLAKE2b-256 | d34831d8ecdf685fcb1bdb87f593f321ad79167f633eab3034c9d0e13c3cc5ec |