Sparkling Water integrates H2O's Fast Scalable Machine Learning with Spark
Project description
This package contains just functionality for scoring with Sparkling Water, H2O-3 and Driverless AI MOJO models.
Documentation describing scoring with H2O-3 MOJO models is located at:
For Spark 3.2 - https://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/deployment/load_mojo.html
For Spark 3.1 - https://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/deployment/load_mojo.html
For Spark 3.0 - https://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/deployment/load_mojo.html
For Spark 2.4 - https://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/deployment/load_mojo.html
For Spark 2.3 - https://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/deployment/load_mojo.html
For Spark 2.2 - https://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/deployment/load_mojo.html
Documentation describing scoring with Driverless AI MOJO models is located at:
For Spark 3.2 - https://docs.h2o.ai/sparkling-water/3.2/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 3.1 - https://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 3.0 - https://docs.h2o.ai/sparkling-water/3.0/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.4 - https://docs.h2o.ai/sparkling-water/2.4/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.3 - https://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/deployment/load_mojo_pipeline.html
For Spark 2.2 - https://docs.h2o.ai/sparkling-water/2.2/latest-stable/doc/deployment/load_mojo_pipeline.html
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for h2o_pysparkling_scoring_3.0-3.36.1.1-1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fde0179a41ecb09626b867fbddd456d75e34388fabc7f506ea9ee7604a77bb3 |
|
MD5 | 3b057aeb80758bff2144f98813c08e19 |
|
BLAKE2b-256 | 4f11495b5a4acf0f9dca4d1433a56bc863573034b9bb6a62e13497844e9f3556 |