Skip to main content

No project description provided

Project description

hakkero-dataloader

A general dataloader build on top of Pytorch Dataloader.

1. How to use

1.1 Build Index

Install pip install hakkero-dataloader and run the following command to build index.

hakkero -h

usage: hakkero [-h] [--version] [--filename FILENAME] [--output OUTPUT] --dtype {legacy,message,preference} [--num_workers NUM_WORKERS]

build index for dataset

optional arguments:
  -h, --help            show this help message and exit
  --version             show program's version number and exit
  --filename FILENAME   full filename of jsonl file
  --output OUTPUT       output path for saving data.jsonl and index.h5
  --dtype {legacy,message,preference}
                        data type
  --num_workers NUM_WORKERS
                        number of workers

1.2 Use In Training

from hakkero.dataset import get_dataset

# pretrain or sft
from hakkero.dataset import PadLoader
from hakkero.dataset import UnpadLoader

# preference
from hakkero.dataset import PreferencePadLoader
from hakkero.dataset import PreferenceUnpadLoader

dp_world_size, dp_rank = 1, 0
tokenizer = ...
batch_size = 4
max_length = 4096
n_workers = 2

dataset = get_dataset(
    config="/path/to/dataset",
    tokenizer=tokenizer,
    num_epochs=-1,
    max_length=max_length,
    homogeneous=True,
    seed=9527,
    rank=dp_rank,
    world_size=dp_world_size,
    n_workers=n_workers,
    # segment and tokenize strategy or set them in `config` and let strategy_segment=None and strategy_tokenize=None: 
    st_segment="naive",
    st_tokenize="legacy",
    # add bos/eos token for legacy tokenize strategy
    add_bos_token=True,
    add_eos_token=True,
    # norm dataset weight with tokens of target
    norm_weight_with_n_targets=False,
)

dataloader = UnpadLoader(dataset, max_total_length=batch_size * max_length)
prefetcher = dataloader.prefetch(n_workers)

for step, batch in enumerate(prefetcher, start=0):
    print(batch)

example of config:

{
    "hermes25_1":
    {
        "group": "en",
        "name": "hermes25_1",
        "epoch": 1,
        "path": "hermes25",
        "strategy":
        {
            "st_segment": "integrous",
            "st_tokenize": "hg"
        },
        "weight": 0.5
    },
    "hermes25_2":
    {
        "group": "en",
        "name": "hermes25_1",
        "epoch": 1,
        "path": "hermes25",
        "strategy":
        {
            "st_segment": "integrous",
            "st_tokenize": "hg"
        },
        "weight": 0.5
    }
}

2. Supported Strategies

See segmentation.py and tokenization.py for more details.

2.1 Segmentation Strategies

  • integrous: discard sample that is too long, exceed max_length
  • concat: split long sample, concat it with previous segment, shuffle all segments
    • not support preference data.
  • naive: split long sample with random length, shuffle all segments
    • not support preference data.
  • unbiased: split long sample exceed max_length with random length, shuffle all segments.
    • not support preference data.

2.2 Tokenization Strategies

  • legacy: \n\n as delimiter to join text and use tokenizer.encode to encode the input.

    • format of input data

      {
        "uid": "xxx",
        "data":
        {
            "title": "xxx",
            "summary": "xxx",
            "abstract": "xxx",
            "text": "xxx",
            "question": "xxx",
            "answer": "xxx",
            "code": "xxx",
            "label": "xxx"
        }
      }
      
      • All fields except label are stripped and joined with "\n\n" as the context.
      • label is the target to learn for finetuning (pretrain data should not have the label field).
      • See func legacy in tokenization.py for more details.
    • extra parameters: add_bos_token, add_eos_token

  • hg: huggingface message data, use tokenizer.apply_chat_template to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": [
          {"role": "user", "content": "xxx"},
          {"role": "assistant", "content": "xxx"},
           ...
        ]
      }
      

      See func huggingface_message in tokenization.py for more details.

  • chatml: chat message data, use chatml to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": [
          {"role": "user", "content": "xxx"},
          {"role": "assistant", "content": "xxx"},
           ...
        ]
      }
      

      See func chatml_message in tokenization.py for more details.

  • chatml_qwen2_vl_message: chat message vl data, use chatml to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": [
          {
              "role": "user",
              "content": [
                  {
                      "type": "image",
                      "image": "images/2.jpg"
                  },
                  {
                      "type": "text",
                      "text": "他是谁?"
                  }
              ]
          },
          {
              "role": "assistant",
              "content": [
                  {
                      "type": "text",
                      "text": "他是来自拜仁慕尼黑的托马斯·穆勒。"
                  }
              ]
          },
           ...
        ]
      }
      

      See func chatml_qwen2_vl_message in tokenization.py for more details. Only support "integrous" segmentation strategies

  • hg_preference: preference data, use tokenizer.apply_chat_template to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": {
          "context": [
            {"role": "user", "content": "xxx"},
            {"role": "assistant", "content": "xxx"},
            ...
            {"role": "user", "content": "xxx"}
          ],
          "chosen": "chosen response",
          "rejected": "rejected response"
        }
      }
      

      See func huggingface_preference in tokenization.py for more details.

  • chatml_preference: preference data, use chatml to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": {
          "context": [
            {"role": "user", "content": "xxx"},
            {"role": "assistant", "content": "xxx"},
            ...
            {"role": "user", "content": "xxx"}
          ],
          "chosen": "chosen response",
          "rejected": "rejected response"
        }
      }
      

      See func chatml_preference in tokenization.py for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hakkero-dataloader-1.0.1.tar.gz (28.1 kB view details)

Uploaded Source

File details

Details for the file hakkero-dataloader-1.0.1.tar.gz.

File metadata

  • Download URL: hakkero-dataloader-1.0.1.tar.gz
  • Upload date:
  • Size: 28.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for hakkero-dataloader-1.0.1.tar.gz
Algorithm Hash digest
SHA256 229ecba70f12c6c9479c057adc795975dab106efe0cb18edefc0d8fcf00528f1
MD5 be952b7042457d9a6410d61307fffb22
BLAKE2b-256 1a173ce2a57163c4e4cd3161d472f6680535f401184bc4d4742da115d6430543

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page