Skip to main content

conf, logs, namespace, etc

Project description

hao

configurations, logs and others.

install

pip install hao

precondition

The folder contained any of the following files (searched in this very order) will be treated as project root path.

  • pyproject.toml
  • requirements.txt
  • setup.py
  • LICENSE
  • .idea
  • .git
  • .vscode

If your project structure does NOT conform to this, it will not work as expected.

features

config

It will try to load YAML config file from conf folder

.                               # project root
├── conf
│   ├── config-{env}.yml        # if `export env=abc`, will raise error if not found
│   ├── config-{hostname}.yml   # try to load this file, then the default `config.yml`
│   └── config.yml              # the default config file that should always exist
├── pyproject.toml              # or requirements.txt
├── .git

In following order:

if os.environ.get("env") is not None:
    try_to_load(f'config-{env}.yml', fallback='config.yml')                   # echo $env
else:
    try_to_load(f'config-{socket.gethostname()}.yml', fallback='config.yml')  # echo hostname

Say you have the following content in your config file:

# config.yml
es:
  default:
    host: 172.23.3.3
    port: 9200
    indices:
      - news
      - papers

The get the configured values in your code:

import hao
es_host = hao.config.get('es.default.host')          # str
es_port = hao.config.get('es.default.port')          # int
indices = hao.config.get('es.default.indices')       # list
...

logs

Set the logger levels to filter logs

e.g.

# config.yml
logging:
  __main__: DEBUG
  transformers: WARNING
  lightning: INFO
  pytorch_lightning: INFO
  elasticsearch: WARNING
  tests: DEBUG
  root: INFO                        # root level

Settings for logger:

# config.yml
logger:
  format: "%(asctime)s %(levelname)-7s %(name)s:%(lineno)-4d - %(message)s"   # overwrite to change to other format
  handlers:
    TimedRotatingFileHandler:    # any Handlers in `logging` and `logging.handlers` with it's config
      when: d
      backupCount: 3

Example

logger:
  format: "%(asctime)s %(levelname)-7s %(name)s:%(lineno)-4d - %(message)s"   # overwrite to change to other format
  handlers:
    stdout:
      format: "%(asctime)s %(levelname)-7s %(name)s:%(lineno)-4d - %(message)s"   # overwrite to change to other format
    file:
      format: "%(message)s"   # overwrite to change to other format
      handler: TimedRotatingFileHandler
      args:
        when: d
        backupCount: 3
        filename: test.log
    rolling-file:
      handler: TimedRotatingFileHandler
      args:
        when: d
        backupCount: 3
        filename: hello.log

logging:
  root: INFO
  torch.models: INFO
  __main__: DEBUG
  access:
    level: INFO
    handlers:
      - stdout
      - rolling-file
  test:
    level: INFO
    handlers:
      - file

Declare and user the logger

import hao
LOGGER = hao.logs.get_logger(__name__)

LOGGER.debug('message')
LOGGER.info('message')
LOGGER.warnning('message')
LOGGER.error('message')
LOGGER.exception(err)

namespaces

import hao
from hao.namespaces import from_args, attr

@from_args
class ProcessConf(object):
    file_in = attr(str, required=True, help="file path to process")
    file_out = attr(str, required=True, help="file path to save")
    tokenizer = attr(str, required=True, choice=('wordpiece', 'bpe'))


from argparse import Namespace
from pytorch_lightning import Trainer
@from_args(adds=Trainer.add_argparse_args)
class TrainConf(Namespace):
    root_path_checkpoints = attr(str, default=hao.paths.get_path('data/checkpoints/'))
    dataset_train = attr(str, default='train.txt')
    dataset_val = attr(str, default='val.txt')
    dataset_test = attr(str, default='test.txt')
    batch_size = attr(int, default=128, key='train.batch_size')                          # key means try to load from config.yml by the key
    task = attr(str, choices=('ner', 'nmt'), default='ner')
    seed = attr(int)
    epochs = attr(int, default=5)

Where attr is a wrapper for argpars.add_argument()

Usage 1: overwrite the default value from command line

python -m your_module --task=nmt

Usage 2: overwrite the default value from constructor

train_conf = TrainConf(task='nmt')

Value lookup order:

  • command line
  • constructor
  • config yml if key specified in attr
  • default if specified in attr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hao-3.8.5.tar.gz (108.2 kB view details)

Uploaded Source

Built Distribution

hao-3.8.5-py3-none-any.whl (118.1 kB view details)

Uploaded Python 3

File details

Details for the file hao-3.8.5.tar.gz.

File metadata

  • Download URL: hao-3.8.5.tar.gz
  • Upload date:
  • Size: 108.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for hao-3.8.5.tar.gz
Algorithm Hash digest
SHA256 f82364d58f829dc0e46a704ffb2b9af0cf75034194b372a2a3680f4972c3f137
MD5 4fb1bcb54f66bb82bf14c5e56ad68d82
BLAKE2b-256 810c2acbe61c15a1f8fa898857edb0c53cd228608570af6795e61c469fc2adcc

See more details on using hashes here.

File details

Details for the file hao-3.8.5-py3-none-any.whl.

File metadata

  • Download URL: hao-3.8.5-py3-none-any.whl
  • Upload date:
  • Size: 118.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for hao-3.8.5-py3-none-any.whl
Algorithm Hash digest
SHA256 830bdb46508c77f16198623c6e78ac8c4ff7cf0753726ccad1d007a28a28bff5
MD5 099970963f3318d8e6d5c58f7425de8b
BLAKE2b-256 87069c25ea1af03794394a6d7747382611fa4968143473c43a10ea5c141388a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page