Hardware-aware optimization and design automation
Project description
Hardware-Aware Optimization and Design Automation
Reusable Python utilities for hardware-aware optimization and design automation.
Feature Synopsis
- intermediate representation (IR) system
- Xilinx tool backend
- Xilinx report parser
- Intel tool backend
- Intel report parser
Getting Started
Prerequisites
- Python 3.5+ and corresponding
pip
How to install Python 3.5+ on Ubuntu 16.04+ and CentOS 7?
Ubuntu 16.04+
sudo apt install python3 python3-pip
CentOS 7
sudo yum install python3 python3-pip
Installing from PyPI
python3 -m pip install --user --upgrade haoda
Installing from Source
python3 setup.py install --user
Installing for Development
python3 -m pip install --editable .
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
haoda-0.0.20191220.dev1.tar.gz
(21.7 kB
view hashes)
Built Distributions
haoda-0.0.20191220.dev1-py3.5.egg
(59.2 kB
view hashes)
Close
Hashes for haoda-0.0.20191220.dev1-py3.5.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2295766f43602af6031d462ab35047992dbdaa7a6ad72173f0be584f37613602 |
|
MD5 | 34756d3cfb9e100b7d54fae3276b961b |
|
BLAKE2b-256 | 2326e28906844badb91f40f9a1584d9f5b453d386a44df139ee7d09d2dc0ed3f |
Close
Hashes for haoda-0.0.20191220.dev1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8335e46211f02356faa2c7f8368987155529013269a47882c63a3c8be7e00742 |
|
MD5 | 19bb59bd660a74e9ac99404305120586 |
|
BLAKE2b-256 | b1f9d4e1538953fa4768d32af2e8b365cec0c5e5a6c065bc8b0f37aacd8133a0 |