Skip to main content

Interoperate among reinforcement learning libraries with jax, pytorch, gym and dm_env

Project description

HELX: The RL experiments framework

Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public. CI CD GitHub release (latest by date)

Quickstart | Installation | Examples | Cite

What is HELX?

HELX is a JAX-based ecosystem that provides a standardised and ready to use framework to run Reinforcement Learning experiments.

The ecosystem is made of three main nodes:

  • HELX-base, containing the base objects of the framework
  • HELX-agents, containing the most common RL baselines
  • HELX-envs, which provides a single API to the most common RL environments (gym, gymnax, dm_env, atari, ...)
  • Finally, HELX, which packs the other three nodes into a framework to run and manage experiments

Installation

  • Stable

Install the stable version of helx and its dependencies with:

pip install helx
  • Nightly

Or, if you prefer to install the latest version from source:

pip install git+https://github.com/epignatelli/helx

Examples

A typical use case is to design an agent, and toy-test it on catch before evaluating it on more complex environments, such as atari, procgen or mujoco.

import bsuite
import gym

import helx.environment
import helx.experiment
import helx.agents

# create the enviornment in you favourite way
env = bsuite.load_from_id("catch/0")
# convert it to an helx environment
env = helx.environment.to_helx(env)
# create the agent
hparams = helx.agents.Hparams(env.obs_space(), env.action_space())
agent = helx.agents.Random(hparams)

# run the experiment
helx.experiment.run(env, agent, episodes=100)

Switching to a different environment is as simple as changing the env variable.

import bsuite
import gym

import helx.environment
import helx.experiment
import helx.agents

# create the enviornment in you favourite way
-env = bsuite.load_from_id("catch/0")
+env = gym.make("procgen:procgen-coinrun-v0")
# convert it to an helx environment
env = helx.environment.to_helx(env)
# create the agent
hparams = helx.agents.Hparams(env.obs_space(), env.action_space())
agent = helx.agents.Random(hparams)

# run the experiment
helx.experiment.run(env, agent, episodes=100)

Supported libraries

We currently support these external environment models:

On the road:


Adding a new agent (helx.agents.Agent)

An helx agent interface is designed as the minimal set of functions necessary to (i) interact with an environment and (ii) reinforcement learn.

class Agent(ABC):
    """A minimal RL agent interface."""

    @abstractmethod
    def sample_action(self, timestep: Timestep) -> Array:
        """Applies the agent's policy to the current timestep to sample an action."""

    @abstractmethod
    def update(self, timestep: Timestep) -> Any:
        """Updates the agent's internal state (knowledge), such as a table,
        or some function parameters, e.g., the parameters of a neural network."""

Adding a new environment library (helx.environment.Environment)

To add a new library requires three steps:

  1. Implement the helx.environment.Environment interface for the new library. See the dm_env implementation for an example.
  2. Implement serialisation (to helx) of the following objects:
    • helx.environment.Timestep
    • helx.spaces.Discrete
    • helx.spaces.Continuous
  3. Add the new library to the helx.environment.to_helx function to tell helx about the new protocol.

Cite

If you use helx please consider citing it as:

@misc{helx,
  author = {Pignatelli, Eduardo},
  title = {Helx: Interoperating between Reinforcement Learning Experimental Protocols},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/epignatelli/helx}}
  }

A note on maintainance

This repository was born as the recipient of personal research code that was developed over the years. Its maintainance is limited by the time and the resources of a research project resourced with a single person. Even if I would like to automate many actions, I do not have the time to maintain the whole body of automation that a well maintained package deserves. This is the reason of the WIP badge, which I do not plan to remove soon. Maintainance will prioritise the code functionality over documentation and automation.

Any help is very welcome. A quick guide to interacting with this repository:

  • If you find a bug, please open an issue, and I will fix it as soon as I can.
  • If you want to request a new feature, please open an issue, and I will consider it as soon as I can.
  • If you want to contribute yourself, please open an issue first, let's discuss objective, plan a proposal, and open a pull request to act on it.

If you would like to be involved further in the development of this repository, please contact me directly at: edu dot pignatelli at gmail dot com.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

HELX-base-1.0.0.tar.gz (23.4 kB view details)

Uploaded Source

Built Distribution

HELX_base-1.0.0-py2.py3-none-any.whl (20.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file HELX-base-1.0.0.tar.gz.

File metadata

  • Download URL: HELX-base-1.0.0.tar.gz
  • Upload date:
  • Size: 23.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for HELX-base-1.0.0.tar.gz
Algorithm Hash digest
SHA256 a132fdee9d9341f3a568dae43b30622d00049dd6e57da7cd09e9c0d732e46f0b
MD5 7b794e5cfe42b518c54f1dcf2f479b35
BLAKE2b-256 ed7a46ded7b4d78db6eba33721964f512f8b6e8fa041e2781a838ab8cee229b5

See more details on using hashes here.

File details

Details for the file HELX_base-1.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: HELX_base-1.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for HELX_base-1.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d0e50acb0ec9e1d972d71ee595a166f3537106b74042e9b809e3bf7b28b1c010
MD5 0b3cfc0cbc1439e00764b091ade60b4e
BLAKE2b-256 955d23b2c227c71bd0188c3c0ed48350a58a4516fa4acee1c3afe3d4456c43a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page