Suite of tools for analysing the independence between training and evaluation biosequence datasets and to generate new generalisation-evaluating hold-out partitions
Project description
# Hestia Independent evaluation set construction for trustworthy ML models in biochemistry
<a href=”https://ibm.github.io/Hestia-OOD/”><img alt=”Tutorials” src=”https://img.shields.io/badge/docs-tutorials-green” /></a> <a href=”https://github.com/IBM/Hestia-OOD/blob/main/LICENSE”><img alt=”GitHub” src=”https://img.shields.io/github/license/IBM/Hestia-OOD” /></a> <a href=”https://pypi.org/project/hestia-ood/”><img src=”https://img.shields.io/pypi/v/hestia-ood” /></a> <a href=”https://pypi.org/project/hestia-ood/”><img src=”https://img.shields.io/pypi/dm/hestia-ood” /></a>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file hestia-ood-0.0.6.tar.gz
.
File metadata
- Download URL: hestia-ood-0.0.6.tar.gz
- Upload date:
- Size: 16.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ee631de8fe69fed7408a3ce31954bd4c193674fafb6405d9c950924b50a1fe37 |
|
MD5 | b292b5d045d7d2d567213436f9518489 |
|
BLAKE2b-256 | 5ed6bd726d25e80f267c6d5b5c4cefddd2eba9ce255d2009847ec8df69a9b56e |
File details
Details for the file hestia_ood-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: hestia_ood-0.0.6-py3-none-any.whl
- Upload date:
- Size: 19.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef146073b4dcd3b51a5962a86f0dbbc1811c88427ff4b1dc88a6d5332eca5227 |
|
MD5 | 84427ab5fd15d5fc67d4a8ec12a7fba3 |
|
BLAKE2b-256 | 6c57fd4eb5e4b055ab88d9c445549b7e7a6ef8bc255ed6614de24fdf66d43f83 |