Connecting Transfromers on HuggingfaceHub with Ctranslate2
Project description
hf_hub_ctranslate2
Connecting Transfromers on HuggingfaceHub with Ctranslate2 - a small utility for keeping tokenizer and model around Huggingface Hub.
Usage:
Decoder-only Transformer:
# download ctranslate.Generator repos from Huggingface Hub (GPT-J, ..)
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
model_name_1="michaelfeil/ct2fast-pythia-160m"
model = GeneratorCT2fromHfHub(
# load in int8 on CPU
model_name_or_path=model_name_1, device="cpu", compute_type="int8"
)
outputs = model.generate(
text=["How do you call a fast Flan-ingo?", "User: How are you doing?"]
# add arguments specifically to ctranslate2.Generator here
)
Encoder-Decoder:
# download ctranslate.Translator repos from Huggingface Hub (T5, ..)
model_name_2 = "michaelfeil/ct2fast-flan-alpaca-base"
model = TranslatorCT2fromHfHub(
# load in int8 on CUDA
model_name_or_path=model_name_2, device="cuda", compute_type="int8_float16"
)
outputs = model.generate(
text=["How do you call a fast Flan-ingo?", "Translate to german: How are you doing?"],
# use arguments specifically to ctranslate2.Translator below:
min_decoding_length=8,
max_decoding_length=16,
max_input_length=512,
beam_size=3
)
print(outputs)
Encoder-Decoder for multilingual translations (m2m-100):
model = MultiLingualTranslatorCT2fromHfHub(
model_name_or_path="michaelfeil/ct2fast-m2m100_418M", device="cpu", compute_type="int8",
tokenizer=AutoTokenizer.from_pretrained(f"facebook/m2m100_418M")
)
outputs = model.generate(
["How do you call a fast Flamingo?", "Wie geht es dir?"],
src_lang=["en", "de"],
tgt_lang=["de", "fr"]
)
PYPI Install
pip install hf-hub-ctranslate2
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for hf_hub_ctranslate2-2.0.8-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1664c518df5ccea10e5a63b84361029f63eed5b9c2d7eee62b25da66255da81b |
|
MD5 | 3ffd75d39bae5852dae59d3f368a91b8 |
|
BLAKE2b-256 | 1da6b2ee1e94653462fc8f59b4eb8aba48ae8d00b8fafb0da41edb377afc11ec |