A HF Trainer Implementation for Multitask Training Logs
Project description
Enhanced Multitask Trainer for Separately Reporting Task's Metrics or Losses in HuggingFace Transformers
The HuggingFace transformers library is widely used for model training. For example, to adapt a pretrained BERT model to a specific task domain, we often continue pretraining the model with two tasks in BERT: 1) Next Sentence Prediction (NSP) using the [CLS]
token, and 2) Masked Language Modeling (MLM) using masked tokens.
A key issue is that the default Trainer
in transformers
assumes the first element of the output is the final loss to minimize. The loss returned by the forward
method must be a scalar, so when training a multitask model like BERT, the loss needs to be combined.
The Trainer
class offers command-line arguments to control the training process. However, it only provides a combined loss value for all tasks, which obscures the individual losses of each task. This makes it challenging to monitor training and debug different task settings. Additionally, the Tensorboard
report only shows the combined loss in its metrics.
To facilitate multitask model training and review the loss of each task, as well as other training metrics, this trainer implementation is simple and useful.
The trainer works like the original Trainer
in the transformers
library. You just need to call the report_metrics(...)
method to report the metrics that are important to you.
By the way, another utility you might need is parser-binding, which builds argument parsers from dataclasses and reads the arguments from command line scripts.
Usage
Follow these steps to use the HfMultiTaskTrainer
:
-
Install the trainer:
pip install hf-mtask-trainer
-
Replace the default trainer with
HfMultiTaskTrainer
:from hf_mtask_trainer import HfMultiTaskTrainer class Trainer(HfMultiTaskTrainer): def __init__(...): super().__init__(...) # Additional initialization code
Alternatively, you can directly instantiate the
HfMultiTaskTrainer
:trainer = HfMultiTaskTrainer(...)
-
Report metrics in the model:
import torch.nn as nn class Model(nn.Module): def __init__(...): super().__init__(...) # Additional initialization code def forward(self, inputs, ...): # Calculate metrics like loss, accuracy, etc. task1_loss = ... task2_loss = ... acc = ... f1 = ... # Report the metrics self.report_metrics(loss1=task1_loss, loss2=task2_loss, acc=acc, f1=f1)
-
Start training the model:
As usual, call
trainer.train()
to start training.
Now you can enjoy multitask training. If you set --report tensorboard
, the metrics reported in the model will be displayed in Tensorboard diagrams.
Demo
We give a simple demo to mock a multi-task training in test_trainer.py.
The source code is:
import random
import numpy as np
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers.hf_argparser import HfArgumentParser
from transformers.training_args import TrainingArguments
from hf_mtask_trainer import HfMultiTaskTrainer
# The model class
class TestModel(nn.Module):
def __init__(self, ) -> None:
super().__init__()
self.scaler = nn.Parameter(torch.ones(1))
def forward(self, x):
test_tensor = x + self.scaler
test_np = np.array(np.random.randn()).astype(np.float32)
test_int = random.randint(1, 100)
test_float = random.random()
self.report_metrics(
tensor=test_tensor,
np=test_np,
integer=test_int,
fp_num=test_float
)
loss = ((
test_tensor + torch.from_numpy(test_np) + torch.tensor(test_int) +
torch.tensor(test_float) - 0
)).mean()
outputs = (loss, )
return outputs
# Mock dataset
class MockDataset(Dataset):
def __len__(self):
return 1000
def __getitem__(self, index: int):
return dict(x=torch.randn(10, dtype=torch.float32))
def main():
parser = HfArgumentParser(TrainingArguments)
args, = parser.parse_args_into_dataclasses()
model = TestModel()
ds = MockDataset()
# Use HfMultiTaskTrainer rather than Trainer
trainer = HfMultiTaskTrainer(model, args, train_dataset=ds)
trainer.train()
if __name__ == '__main__':
main()
Run the script to start training: python test_trainer.py --output_dir ./test-output --per_device_train_batch_size 8 --gradient_accumulation_steps 4 --logging_steps 10 --num_train_epochs 10
.
The progress in the terminal is:
{'loss': 55.509, 'grad_norm': 1.0, 'learning_rate': 4.8387096774193554e-05, 'tensor': 0.9841784507036209, 'np': -0.21863683552946894, 'integer': 54.3, 'fp_num': 0.4434714410935673, 'epoch': 0.32}
{'loss': 48.2661, 'grad_norm': 1.0, 'learning_rate': 4.67741935483871e-05, 'tensor': 0.9985833063721656, 'np': -0.02904345905408263, 'integer': 46.725, 'fp_num': 0.5715085473120125, 'epoch': 0.64}
{'loss': 46.4612, 'grad_norm': 1.0, 'learning_rate': 4.516129032258064e-05, 'tensor': 0.9966234847903251, 'np': 0.010173140384722501, 'integer': 44.95, 'fp_num': 0.5043715258219943, 'epoch': 0.96}
{'loss': 48.6079, 'grad_norm': 1.0, 'learning_rate': 4.3548387096774194e-05, 'tensor': 0.9955430060625077, 'np': -0.03289987128227949, 'integer': 47.175, 'fp_num': 0.47028585139293366, 'epoch': 1.28}
{'loss': 50.091, 'grad_norm': 1.0, 'learning_rate': 4.1935483870967746e-05, 'tensor': 0.9734495922923088, 'np': 0.06655221048276871, 'integer': 48.55, 'fp_num': 0.5009696474466848, 'epoch': 1.6}
{'loss': 52.1638, 'grad_norm': 1.0, 'learning_rate': 4.032258064516129e-05, 'tensor': 1.0023577958345413, 'np': 0.18944044597446918, 'integer': 50.5, 'fp_num': 0.47205086657725437, 'epoch': 1.92}
{'loss': 61.3063, 'grad_norm': 1.0, 'learning_rate': 3.870967741935484e-05, 'tensor': 1.0168104887008667, 'np': -0.10900555825792253, 'integer': 60.0, 'fp_num': 0.39849607236524115, 'epoch': 2.24}
{'loss': 55.318, 'grad_norm': 1.0, 'learning_rate': 3.7096774193548386e-05, 'tensor': 1.015606315433979, 'np': 0.21950888196006418, 'integer': 53.575, 'fp_num': 0.5078790131376146, 'epoch': 2.56}
{'loss': 57.1703, 'grad_norm': 1.0, 'learning_rate': 3.548387096774194e-05, 'tensor': 1.0161942049860955, 'np': -0.08120755353011191, 'integer': 55.675, 'fp_num': 0.5603439507938002, 'epoch': 2.88}
{'loss': 47.6687, 'grad_norm': 1.0, 'learning_rate': 3.387096774193548e-05, 'tensor': 0.9780291050672532, 'np': 0.21060471932869404, 'integer': 46.025, 'fp_num': 0.4550899259063651, 'epoch': 3.2}
{'loss': 50.6742, 'grad_norm': 1.0, 'learning_rate': 3.2258064516129034e-05, 'tensor': 0.9773322150111199, 'np': 0.053728557180147615, 'integer': 49.15, 'fp_num': 0.4931880990797102, 'epoch': 3.52}
{'loss': 55.3104, 'grad_norm': 1.0, 'learning_rate': 3.0645161290322585e-05, 'tensor': 0.962137694656849, 'np': -0.079732296615839, 'integer': 53.975, 'fp_num': 0.45303205544101893, 'epoch': 3.84}
{'loss': 55.3539, 'grad_norm': 1.0, 'learning_rate': 2.9032258064516133e-05, 'tensor': 1.0214665666222573, 'np': -0.15776186664588748, 'integer': 53.9, 'fp_num': 0.590140296440284, 'epoch': 4.16}
{'loss': 49.332, 'grad_norm': 1.0, 'learning_rate': 2.7419354838709678e-05, 'tensor': 1.0191335454583168, 'np': -0.2712035422213376, 'integer': 48.025, 'fp_num': 0.5590896723075907, 'epoch': 4.48}
{'loss': 49.8865, 'grad_norm': 1.0, 'learning_rate': 2.5806451612903226e-05, 'tensor': 1.0170967370271682, 'np': 0.02669397685676813, 'integer': 48.275, 'fp_num': 0.5677363725430722, 'epoch': 4.8}
{'loss': 55.0644, 'grad_norm': 1.0, 'learning_rate': 2.4193548387096777e-05, 'tensor': 0.99910968542099, 'np': 0.12097712438553572, 'integer': 53.475, 'fp_num': 0.4693036682925622, 'epoch': 5.12}
{'loss': 56.9469, 'grad_norm': 1.0, 'learning_rate': 2.258064516129032e-05, 'tensor': 1.0159066557884215, 'np': -0.06122639870736748, 'integer': 55.6, 'fp_num': 0.3922143274213026, 'epoch': 5.44}
{'loss': 58.3238, 'grad_norm': 1.0, 'learning_rate': 2.0967741935483873e-05, 'tensor': 0.9946490600705147, 'np': -0.038768217992037536, 'integer': 56.875, 'fp_num': 0.49290766579450906, 'epoch': 5.76}
{'loss': 57.8349, 'grad_norm': 1.0, 'learning_rate': 1.935483870967742e-05, 'tensor': 0.9948656186461449, 'np': -0.15342782847583294, 'integer': 56.55, 'fp_num': 0.4434852700815277, 'epoch': 6.08}
{'loss': 57.5093, 'grad_norm': 1.0, 'learning_rate': 1.774193548387097e-05, 'tensor': 0.9814934283494949, 'np': 0.17727854922413827, 'integer': 55.85, 'fp_num': 0.5005189062297719, 'epoch': 6.4}
{'loss': 54.0808, 'grad_norm': 1.0, 'learning_rate': 1.6129032258064517e-05, 'tensor': 1.0003552585840225, 'np': 0.09905800204724073, 'integer': 52.425, 'fp_num': 0.5563636991813741, 'epoch': 6.72}
{'loss': 41.9312, 'grad_norm': 1.0, 'learning_rate': 1.4516129032258066e-05, 'tensor': 0.9884074732661248, 'np': 0.1483861011918634, 'integer': 40.275, 'fp_num': 0.51941084196083, 'epoch': 7.04}
{'loss': 54.1181, 'grad_norm': 1.0, 'learning_rate': 1.2903225806451613e-05, 'tensor': 1.0151973858475685, 'np': 0.47866107723675666, 'integer': 52.175, 'fp_num': 0.4492639089144623, 'epoch': 7.36}
{'loss': 50.6587, 'grad_norm': 1.0, 'learning_rate': 1.129032258064516e-05, 'tensor': 0.9820004492998123, 'np': -0.012274338398128748, 'integer': 49.2, 'fp_num': 0.4889366814531261, 'epoch': 7.68}
{'loss': 55.0801, 'grad_norm': 1.0, 'learning_rate': 9.67741935483871e-06, 'tensor': 0.9795809179544449, 'np': -0.07257360897492618, 'integer': 53.725, 'fp_num': 0.448120297698113, 'epoch': 8.0}
{'loss': 44.1352, 'grad_norm': 1.0, 'learning_rate': 8.064516129032258e-06, 'tensor': 0.9734664395451545, 'np': 0.286221909429878, 'integer': 42.375, 'fp_num': 0.5005484995389671, 'epoch': 8.32}
{'loss': 66.0453, 'grad_norm': 1.0, 'learning_rate': 6.451612903225806e-06, 'tensor': 0.9795126229524612, 'np': 0.030494442163035273, 'integer': 64.525, 'fp_num': 0.5103026267522799, 'epoch': 8.64}
{'loss': 56.4957, 'grad_norm': 1.0, 'learning_rate': 4.838709677419355e-06, 'tensor': 0.9856317490339279, 'np': 0.2455663602799177, 'integer': 54.775, 'fp_num': 0.48952095056963413, 'epoch': 8.96}
{'loss': 58.896, 'grad_norm': 1.0, 'learning_rate': 3.225806451612903e-06, 'tensor': 0.9927483782172203, 'np': 0.14382120433729143, 'integer': 57.275, 'fp_num': 0.4843773558505675, 'epoch': 9.28}
{'loss': 51.3854, 'grad_norm': 1.0, 'learning_rate': 1.6129032258064516e-06, 'tensor': 0.974456462264061, 'np': -0.03793883747421205, 'integer': 49.975, 'fp_num': 0.4738723365026173, 'epoch': 9.6}
{'loss': 51.1056, 'grad_norm': 1.0, 'learning_rate': 0.0, 'tensor': 1.0064959138631822, 'np': 0.17969400193542243, 'integer': 49.375, 'fp_num': 0.5444181010304485, 'epoch': 9.92}
{'train_runtime': 0.4796, 'train_samples_per_second': 20852.484, 'train_steps_per_second': 646.427, 'train_loss': 53.31389662219632, 'epoch': 9.92}
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 310/310 [00:00<00:00, 648.81it/s]
Limitation
This trainer has not been fully tested yet but works for simple multitask training. Please report any issues if this plugin does not work for you.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file hf_mtask_trainer-0.0.2a0.tar.gz
.
File metadata
- Download URL: hf_mtask_trainer-0.0.2a0.tar.gz
- Upload date:
- Size: 13.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efe1fa315fadbfb73faf47776972fb6b1a7318dbbc28842b7c3b31234c4e9b33 |
|
MD5 | dfac2d07b953742e06c5bfa8863822a4 |
|
BLAKE2b-256 | 80f24cc490488e20b1aef86da1324b1213bac4ec31cfa2ea0cb2773e6426407c |
File details
Details for the file hf_mtask_trainer-0.0.2a0-py3-none-any.whl
.
File metadata
- Download URL: hf_mtask_trainer-0.0.2a0-py3-none-any.whl
- Upload date:
- Size: 11.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d631214d9836c186f84f2ad1e9a7d89baaed8af88e15c74fd4921ce494436e48 |
|
MD5 | 89077eacccf07e93c6a3819027b335c5 |
|
BLAKE2b-256 | 31b19a6924ca92f174e4af551c88d8e1e351f4e15391949134ce1a64a117b86b |