Skip to main content

hgboost is a python package for hyperparameter optimization for xgboost, catboost and lightboost for both classification and regression tasks.

Project description

hgboost - Hyperoptimized Gradient Boosting

Python PyPI Version License Github Forks GitHub Open Issues Project Status Downloads Downloads Sphinx Open In Colab

Star it if you like it!

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results on an independent validation set. hgboost can be applied for classification and regression tasks.

hgboost is fun because:

* 1. Hyperoptimization of the Parameter-space using bayesian approach.
* 2. Determines the best scoring model(s) using k-fold cross validation.
* 3. Evaluates best model on independent evaluation set.
* 4. Fit model on entire input-data using the best model.
* 5. Works for classification and regression
* 6. Creating a super-hyperoptimized model by an ensemble of all individual optimized models.
* 7. Return model, space and test/evaluation results.
* 8. Makes insightful plots.

Documentation

Regression example Open regression example In Colab

Classification example Open classification example In Colab

Schematic overview of hgboost

Installation Environment

  • Install hgboost from PyPI (recommended). hgboost is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
  • A new environment is recommended and created as following:
conda create -n env_hgboost python=3.6
conda activate env_hgboost

Install newest version hgboost from pypi

pip install hgboost

Force to install latest version

pip install -U hgboost

Install from github-source

pip install git+https://github.com/erdogant/hgboost#egg=master

Import hgboost package

import hgboost as hgboost

Classification example for xgboost, catboost and lightboost:

# Load library
from hgboost import hgboost

# Initialization
hgb = hgboost(max_eval=10, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=42)
# Import data
df = hgb.import_example()
y = df['Survived'].values
y = y.astype(str)
y[y=='1']='survived'
y[y=='0']='dead'

# Preprocessing by encoding variables
del df['Survived']
X = hgb.preprocessing(df)
# Fit catboost by hyperoptimization and cross-validation
results = hgb.catboost(X, y, pos_label='survived')

# Fit lightboost by hyperoptimization and cross-validation
results = hgb.lightboost(X, y, pos_label='survived')

# Fit xgboost by hyperoptimization and cross-validation
results = hgb.xgboost(X, y, pos_label='survived')

# [hgboost] >Start hgboost classification..
# [hgboost] >Collecting xgb_clf parameters.
# [hgboost] >Number of variables in search space is [11], loss function: [auc].
# [hgboost] >method: xgb_clf
# [hgboost] >eval_metric: auc
# [hgboost] >greater_is_better: True
# [hgboost] >pos_label: True
# [hgboost] >Total dataset: (891, 204) 
# [hgboost] >Hyperparameter optimization..
#  100% |----| 500/500 [04:39<05:21,  1.33s/trial, best loss: -0.8800619834710744]
# [hgboost] >Best performing [xgb_clf] model: auc=0.881198
# [hgboost] >5-fold cross validation for the top 10 scoring models, Total nr. tests: 50
# 100%|██████████| 10/10 [00:42<00:00,  4.27s/it]
# [hgboost] >Evalute best [xgb_clf] model on independent validation dataset (179 samples, 20.00%).
# [hgboost] >[auc] on independent validation dataset: -0.832
# [hgboost] >Retrain [xgb_clf] on the entire dataset with the optimal parameters settings.
# Plot searched parameter space 
hgb.plot_params()

# Plot summary results
hgb.plot()

# Plot the best tree
hgb.treeplot()

# Plot the validation results
hgb.plot_validation()

# Plot the cross-validation results
hgb.plot_cv()

# use the learned model to make new predictions.
y_pred, y_proba = hgb.predict(X)

Create ensemble model for Classification

from hgboost import hgboost

hgb = hgboost(max_eval=100, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=None, verbose=3)

# Import data
df = hgb.import_example()
y = df['Survived'].values
del df['Survived']
X = hgb.preprocessing(df, verbose=0)

results = hgb.ensemble(X, y, pos_label=1)

# use the predictor
y_pred, y_proba = hgb.predict(X)

Create ensemble model for Regression

from hgboost import hgboost

hgb = hgboost(max_eval=100, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=None, verbose=3)

# Import data
df = hgb.import_example()
y = df['Age'].values
del df['Age']
I = ~np.isnan(y)
X = hgb.preprocessing(df, verbose=0)
X = X.loc[I,:]
y = y[I]

results = hgb.ensemble(X, y, methods=['xgb_reg','ctb_reg','lgb_reg'])

# use the predictor
y_pred, y_proba = hgb.predict(X)
# Plot the ensemble classification validation results
hgb.plot_validation()

Citation

Please cite hgboost in your publications if this is useful for your research. Here is an example BibTeX entry:

@misc{erdogant2020hgboost,
  title={hgboost},
  author={Erdogan Taskesen},
  year={2020},
  howpublished={\url{https://github.com/erdogant/hgboost}},
}

References

* http://hyperopt.github.io/hyperopt/
* https://github.com/dmlc/xgboost
* https://github.com/microsoft/LightGBM
* https://github.com/catboost/catboost

Maintainers

Contribute

  • Contributions are welcome.

Licence See LICENSE for details.

Coffee

  • This work is created and maintained in my free time. If you wish to buy me a Coffee for this work, it is very appreciated.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hgboost-0.1.7.tar.gz (20.1 kB view details)

Uploaded Source

Built Distribution

hgboost-0.1.7-py3-none-any.whl (21.5 kB view details)

Uploaded Python 3

File details

Details for the file hgboost-0.1.7.tar.gz.

File metadata

  • Download URL: hgboost-0.1.7.tar.gz
  • Upload date:
  • Size: 20.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200925 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.12

File hashes

Hashes for hgboost-0.1.7.tar.gz
Algorithm Hash digest
SHA256 5ceeca2c1d713afd631f1c48372421be729f5d27e3fac74264bc9306f2f08a93
MD5 4567740798bfbd8e1c2c8c6bb3279160
BLAKE2b-256 6e74687fc5eb00905608135b6d07ff553d805f766c9f9e38baeed8261219ceed

See more details on using hashes here.

File details

Details for the file hgboost-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: hgboost-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 21.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200925 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.12

File hashes

Hashes for hgboost-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 c1ac989a549ba1473ff3ce266959fced378467efaf56fb7faa8b0634cc0cb042
MD5 615393134bd49e20dbd5098d9183768a
BLAKE2b-256 f830db6f5c4347edaef0588965d5ed6779921b5880af8421341780b905f8848e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page