Skip to main content

Hierarchical time series reconciliation

Project description

hierTS Airlab Amsterdam

PyPi version Python version

Hierachical Time Series (hierTS) is a lightweight package that offers hierarchical forecasting reconciliation techniques to Python users.

For more details, read the docs or check out the examples.

Reference

The reconciliation methods that are currently in place are based on:

  • Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804-819.

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hierts-0.2.tar.gz (15.1 kB view details)

Uploaded Source

Built Distribution

hierts-0.2-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file hierts-0.2.tar.gz.

File metadata

  • Download URL: hierts-0.2.tar.gz
  • Upload date:
  • Size: 15.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.13

File hashes

Hashes for hierts-0.2.tar.gz
Algorithm Hash digest
SHA256 c0126bb65b0a6c60dfc9059eb7761b1d3f20174e5ba19569e1c5445eee452b5c
MD5 f8e78a643a1286cf92178228767e81f6
BLAKE2b-256 f40e950ba09afcdbce7f15c6e00a8ce0b3ece18559b003ef9a58158c2ca5bf01

See more details on using hashes here.

File details

Details for the file hierts-0.2-py3-none-any.whl.

File metadata

  • Download URL: hierts-0.2-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.13

File hashes

Hashes for hierts-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 dee35b91edcacfb4b4e00aaed709c4dde95996dcd596651d85c2a884430bcf65
MD5 e0f0d465ec32259fe1c10f7042cdef58
BLAKE2b-256 b9dd8c9db8ad11ef0796d70219976943240e110fb0051a6a532e7c1be6e5cdda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page