Real-World Multi-Agent Reinforcement Learning problems, potentially yielding a high positive impact on society when solved.
Project description
HiveX
Real-World Multi-Agent Reinforcement Learning problems, potentially yielding a high positive impact on society when solved.
About
The motivation of the HiveX suite is to provide advanced reinforcement learning benchmarking environments with an emphasis on: (1) real-world scenarios, (2) multi-agent systems, (3) investigating problems and solutions with high impact on society, (4) cooperation and communication mechanisms.
Available Environments
Thumbnail | Title | Domain | Paper | Env Name |
---|---|---|---|---|
Windfarm Orientation Optimisation | Distributed Energy Grids | Link (Neurips'21) |
"WindFarm" |
|
Wildfire-Management Resource Distribution |
Catastrophe Management | Link (ICLR'22) |
"Wildfire" |
Installation
Manual install (Windows)
The installation steps are
as follows (see install.sh
for an example installation script):
-
Create and activate a virtual environment, e.g.:
conda create -n hivex python=3.10 conda activate hivex
-
Install pip and pip-tools:
conda install pip pip install pip-tools pip install pathlib
-
Install HiveX:
git clone -b main https://github.com/philippds/HiveX cd HiveX pip install .
-
Test the HiveX installation:
pip install pytest pytest hivex
Example Usage
Training agents with Stable-Baselines3 (Environment Interface | Learning Framework)
cd <hivex_root>
pip install -e .[stable-baselines3]
Stable-Baselines3 VecEnv | Stable-Baselines3
cd <hivex_root>/examples/stable_baselines3
python sb3_train.py
Gym | Stable-Baselines3
cd <hivex_root>/examples/gym
python gym_train.py
SuperSuit | Stable-Baselines3
cd <hivex_root>/examples/super_suit
python super_suit_train.py
Training agents with ML-Agents (Environment Interface | Learning Framework)
UnityEnvironment | ML-Agents
cd <hivex_root>/examples/ml_agents
python mlagents_train.py
Training agents with RLLib (Linux Only) (Environment Interface | Learning Framework)
cd <hivex_root>
pip install -e .[rllib]
pip install -e .[pettingzoo]
PettingZoo ParallelEnv (AEC) | RLLib
cd <hivex_root>/examples/pettingzoo
python pettingzoo_rllib_train.py
Documentation
Full documentation is available here
Citing HiveX
If you use HiveX in your work, please cite:
@inproceedings{siedler2022hivex,
title={},
author={Philipp D. Siedler},
year={2022},
journal={},
organization={}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.