Skip to main content

A drop-in replacement for PyHPO using a Rust backend for faster performance

Project description

HPO3

hpo3 is a Rust based drop-in replacement of PyHPO. It is based on the hpo Rust library which is a performance optimzied implementation of PyHPO.

Using the Rust-based hpo library increases performance easily 100 fold for many operations. It enables developers to utilize multithreading, further improving performance greatly.

hpo3 aims to use the exact same API and methods as PyHPO to allow a very simple replacement for all analysis and statistics methods. However, it does not allow customization and modification of the ontology or individual terms, genes etc.

Current status

Most functionality of PyHPO is present and working, giving correct results. Similarity calculations and hypergeometric enrichment scores are implemented and working both for single terms and for HPOSets.

There are some helper functions for parallel batchwise processing, which are amazing if you plan on analyzing large datasets.

If you need performance and speed for rapid experiments, give hpo3 a try.

Installation

HPO3 is provided as binary wheels for most platforms on PyPI, so in most cases you can just run

pip install hpo3

(For macOS, only Python 3.10 and 3.11 are supported, for both x64 and arm at the moment.)

hpo3 ships with a prebuilt HPO Ontology by default, so you can start right away.

Examples

There are also more examples in the PyHPO documentation:

from pyhpo import Ontology, HPOSet

# initilize the Ontology
Ontology()

for term in Ontology:
    print(f"{term.id} | {term.name}")

# Declare the clinical information of the patients
patient_1 = HPOSet.from_queries([
    'HP:0002943',
    'HP:0008458',
    'HP:0100884',
    'HP:0002944',
    'HP:0002751'
])

patient_2 = HPOSet.from_queries([
    'HP:0002650',
    'HP:0010674',
    'HP:0000925',
    'HP:0009121'
])

# and compare their similarity
patient_1.similarity(patient_2)
#> 0.7594183905785477

# Retrieve a term e.g. via its HPO-ID
term = Ontology.get_hpo_object('Scoliosis')

print(term)
#> HP:0002650 | Scoliosis

# Get information content from Term <--> Omim associations
term.information_content['omim']
#> 2.29

# Show how many genes are associated to the term
# (Note that this includes indirect associations, associations
# from children terms to genes.)
len(term.genes)
#> 1094

# Show how many Omim Diseases are associated to the term
# (Note that this includes indirect associations, associations
# from children terms to diseases.)
len(term.omim_diseases)
#> 844

# Get a list of all direct parent terms
for p in term.parents:
    print(p)
#> HP:0010674 | Abnormality of the curvature of the vertebral column

# Get a list of all ancestor (direct + indirect parent) terms
for p in term.all_parents:
    print(p)
#> HP:0000001 | All
#> HP:0011842 | Abnormal skeletal morphology
#> HP:0009121 | Abnormal axial skeleton morphology
#> HP:0033127 | Abnormality of the musculoskeletal system
#> HP:0010674 | Abnormality of the curvature of the vertebral column
#> HP:0000118 | Phenotypic abnormality
#> HP:0000924 | Abnormality of the skeletal system
#> HP:0000925 | Abnormality of the vertebral column

# Get a list of all children terms
for p in term.children:
    print(p)
"""
HP:0002944 | Thoracolumbar scoliosis
HP:0008458 | Progressive congenital scoliosis
HP:0100884 | Compensatory scoliosis
HP:0002944 | Thoracolumbar scoliosis
HP:0002751 | Kyphoscoliosis
"""

# Show the categories a term belongs to
for term in Ontology[10049].categories:
    print(term)
"""
HP:0033127 | Abnormality of the musculoskeletal system
HP:0040064 | Abnormality of limbs
"""

Documentation

Check out the hpo3 documentation

Parallel processing

hpo3 is using Rust as backend, so it's able to fully utilize parallel processing. To benefit from this even greater, hpo3 provides some special helper functions for parallel batch processing in the helper submodule

Similarity scores of HPOSets

Pairwise similarity comparison of HPOSets. Specify a list of comparisons to run and hpo3 calculates the result using all available CPUs.

Assume you want to compare the clinical information of a patient to the clinical information of 1000s of other patients:

from pyhpo.helper import set_batch_similarity
from pyhpo import Ontology, HPOSet

Ontology()

main_patient = HPOSet.from_queries([
    'HP:0002943',
    'HP:0008458',
    'HP:0100884',
    'HP:0002944',
    'HP:0002751'
])

# 2 column table with
# - Patient Identifier
# - Comma separated HPO-terms
patient_source = """\
Patient_000001\tHP:0007587,HP:4000044,HP:0001845,HP:0041249,HP:0032648
Patient_000002\tHP:0034338,HP:0031955,HP:0003311,HP:0032564,HP:0100238
Patient_000003\tHP:0031096,HP:0410280,HP:0009899,HP:0002088,HP:0100204
Patient_000004\tHP:0030782,HP:0011439,HP:0009751,HP:0001433,HP:0030336
Patient_000005\tHP:0025029,HP:0033643,HP:0000957,HP:0005593,HP:0012486
Patient_000006\tHP:0009344,HP:0430016,HP:0005621,HP:0010043,HP:0030974
Patient_000007\tHP:0010760,HP:0009331,HP:0100119,HP:0012871,HP:0003653
Patient_000008\tHP:0001636,HP:0000561,HP:0009990,HP:3000075,HP:0007333
Patient_000009\tHP:0011675,HP:0011730,HP:0032729,HP:0032169,HP:0002888
Patient_000010\tHP:0004900,HP:0010761,HP:0020212,HP:0001806,HP:0033372
Patient_000011\tHP:0033336,HP:0025134,HP:0033815,HP:0032290,HP:0032472
Patient_000012\tHP:0004286,HP:0010543,HP:0007258,HP:0009582,HP:0005871
Patient_000013\tHP:0000273,HP:0031967,HP:0033305,HP:0010862,HP:0031750
Patient_000014\tHP:0031403,HP:0020134,HP:0011260,HP:0000826,HP:0030739
Patient_000015\tHP:0009966,HP:0034101,HP:0100736,HP:0032385,HP:0030152
Patient_000016\tHP:0011398,HP:0002165,HP:0000512,HP:0032028,HP:0007807
Patient_000017\tHP:0007465,HP:0031214,HP:0002575,HP:0007765,HP:0100404
Patient_000018\tHP:0033278,HP:0006937,HP:0008726,HP:0012142,HP:0100185
Patient_000019\tHP:0008365,HP:0033377,HP:0032463,HP:0033014,HP:0009338
Patient_000020\tHP:0012431,HP:0004415,HP:0001285,HP:0010747,HP:0008344
Patient_000021\tHP:0008722,HP:0003436,HP:0007313,HP:0031362,HP:0007236
Patient_000022\tHP:0000883,HP:0007542,HP:0012653,HP:0009411,HP:0031773
Patient_000023\tHP:0001083,HP:0030031,HP:0100349,HP:0001120,HP:0010835
Patient_000024\tHP:0410210,HP:0009341,HP:0100811,HP:0032710,HP:0410064
Patient_000025\tHP:0001056,HP:0005561,HP:0003690,HP:0040157,HP:0100059
Patient_000026\tHP:0010651,HP:0500020,HP:0100603,HP:0033443,HP:0008288
Patient_000027\tHP:0012330,HP:0034395,HP:0004066,HP:0000554,HP:0002257
Patient_000028\tHP:0031484,HP:0100423,HP:0030487,HP:0033538,HP:0003172
Patient_000029\tHP:0030901,HP:0025136,HP:0034367,HP:0034101,HP:0045017
Patient_000030\tHP:0100957,HP:0010027,HP:0010806,HP:0020185,HP:0001421
Patient_000031\tHP:0001671,HP:0003885,HP:0001464,HP:0000243,HP:0009549
Patient_000032\tHP:0003521,HP:0003109,HP:0000433,HP:0030647,HP:0100280
Patient_000033\tHP:0006394,HP:0031598,HP:0032199,HP:0010428,HP:0000108
Patient_000034\tHP:0001468,HP:0008689,HP:0410030,HP:0012226,HP:0011388
Patient_000035\tHP:0003536,HP:0001011,HP:0033262,HP:0009978,HP:0025586
Patient_000036\tHP:0031849,HP:0005244,HP:0001664,HP:0041233,HP:0030921
Patient_000037\tHP:0005616,HP:0003874,HP:0011744,HP:0033751,HP:0007971
Patient_000038\tHP:0012836,HP:0033858,HP:0003427,HP:0033880,HP:0030481
Patient_000039\tHP:0100369,HP:0040317,HP:0010561,HP:0010522,HP:0011339
Patient_000040\tHP:0005338,HP:0040179,HP:0004258,HP:0030589,HP:0032981
Patient_000041\tHP:0011758,HP:0033519,HP:0032010,HP:0030710,HP:0010419
Patient_000042\tHP:0002642,HP:0006335,HP:0009895,HP:0001928,HP:0003779
Patient_000043\tHP:0002867,HP:0030404,HP:0033495,HP:0011143,HP:0012642
Patient_000044\tHP:0033432,HP:0005195,HP:0009062,HP:0100617,HP:0033586
Patient_000045\tHP:0011740,HP:0100159,HP:0033480,HP:3000069,HP:0011394
Patient_000046\tHP:0033350,HP:0009840,HP:0040247,HP:0040204,HP:0033099
Patient_000047\tHP:0030323,HP:0032005,HP:0033675,HP:0033869,HP:0010850
Patient_000048\tHP:0003411,HP:0100953,HP:0005532,HP:0032119,HP:0012157
Patient_000049\tHP:0030592,HP:0011691,HP:0010498,HP:0030196,HP:0006414
Patient_000050\tHP:0001549,HP:0040258,HP:0007078,HP:0000657,HP:3000066
"""

comparisons = []

for patient in patient_source.splitlines():
    _, terms = patient.split("\t")
    comparisons.append(
        (
            main_patient,
            HPOSet.from_queries(terms.split(","))
        )
    )

similarities = set_batch_similarity(
    comparisons,
    kind="omim",
    method="graphic",
    combine="funSimMax"
)

(This functionality works well with dataframes, such as pandas or polars, adding the similarity scores as a new series)

Gene and Disease enrichments in HPOSets

Calculate the gene enrichment in several HPOSets in parallel

from pyhpo.helper import batch_gene_enrichment
from pyhpo.helper import batch_disease_enrichment
from pyhpo import Ontology, HPOSet

Ontology()

# 2 column table with
# - Patient Identifier
# - Comma separated HPO-terms
patient_source = """\
Patient_000001\tHP:0007587,HP:4000044,HP:0001845,HP:0041249,HP:0032648
Patient_000002\tHP:0034338,HP:0031955,HP:0003311,HP:0032564,HP:0100238
Patient_000003\tHP:0031096,HP:0410280,HP:0009899,HP:0002088,HP:0100204
Patient_000004\tHP:0030782,HP:0011439,HP:0009751,HP:0001433,HP:0030336
Patient_000005\tHP:0025029,HP:0033643,HP:0000957,HP:0005593,HP:0012486
Patient_000006\tHP:0009344,HP:0430016,HP:0005621,HP:0010043,HP:0030974
Patient_000007\tHP:0010760,HP:0009331,HP:0100119,HP:0012871,HP:0003653
Patient_000008\tHP:0001636,HP:0000561,HP:0009990,HP:3000075,HP:0007333
Patient_000009\tHP:0011675,HP:0011730,HP:0032729,HP:0032169,HP:0002888
Patient_000010\tHP:0004900,HP:0010761,HP:0020212,HP:0001806,HP:0033372
Patient_000011\tHP:0033336,HP:0025134,HP:0033815,HP:0032290,HP:0032472
Patient_000012\tHP:0004286,HP:0010543,HP:0007258,HP:0009582,HP:0005871
Patient_000013\tHP:0000273,HP:0031967,HP:0033305,HP:0010862,HP:0031750
Patient_000014\tHP:0031403,HP:0020134,HP:0011260,HP:0000826,HP:0030739
Patient_000015\tHP:0009966,HP:0034101,HP:0100736,HP:0032385,HP:0030152
Patient_000016\tHP:0011398,HP:0002165,HP:0000512,HP:0032028,HP:0007807
Patient_000017\tHP:0007465,HP:0031214,HP:0002575,HP:0007765,HP:0100404
Patient_000018\tHP:0033278,HP:0006937,HP:0008726,HP:0012142,HP:0100185
Patient_000019\tHP:0008365,HP:0033377,HP:0032463,HP:0033014,HP:0009338
Patient_000020\tHP:0012431,HP:0004415,HP:0001285,HP:0010747,HP:0008344
Patient_000021\tHP:0008722,HP:0003436,HP:0007313,HP:0031362,HP:0007236
Patient_000022\tHP:0000883,HP:0007542,HP:0012653,HP:0009411,HP:0031773
Patient_000023\tHP:0001083,HP:0030031,HP:0100349,HP:0001120,HP:0010835
Patient_000024\tHP:0410210,HP:0009341,HP:0100811,HP:0032710,HP:0410064
Patient_000025\tHP:0001056,HP:0005561,HP:0003690,HP:0040157,HP:0100059
Patient_000026\tHP:0010651,HP:0500020,HP:0100603,HP:0033443,HP:0008288
Patient_000027\tHP:0012330,HP:0034395,HP:0004066,HP:0000554,HP:0002257
Patient_000028\tHP:0031484,HP:0100423,HP:0030487,HP:0033538,HP:0003172
Patient_000029\tHP:0030901,HP:0025136,HP:0034367,HP:0034101,HP:0045017
Patient_000030\tHP:0100957,HP:0010027,HP:0010806,HP:0020185,HP:0001421
Patient_000031\tHP:0001671,HP:0003885,HP:0001464,HP:0000243,HP:0009549
Patient_000032\tHP:0003521,HP:0003109,HP:0000433,HP:0030647,HP:0100280
Patient_000033\tHP:0006394,HP:0031598,HP:0032199,HP:0010428,HP:0000108
Patient_000034\tHP:0001468,HP:0008689,HP:0410030,HP:0012226,HP:0011388
Patient_000035\tHP:0003536,HP:0001011,HP:0033262,HP:0009978,HP:0025586
Patient_000036\tHP:0031849,HP:0005244,HP:0001664,HP:0041233,HP:0030921
Patient_000037\tHP:0005616,HP:0003874,HP:0011744,HP:0033751,HP:0007971
Patient_000038\tHP:0012836,HP:0033858,HP:0003427,HP:0033880,HP:0030481
Patient_000039\tHP:0100369,HP:0040317,HP:0010561,HP:0010522,HP:0011339
Patient_000040\tHP:0005338,HP:0040179,HP:0004258,HP:0030589,HP:0032981
Patient_000041\tHP:0011758,HP:0033519,HP:0032010,HP:0030710,HP:0010419
Patient_000042\tHP:0002642,HP:0006335,HP:0009895,HP:0001928,HP:0003779
Patient_000043\tHP:0002867,HP:0030404,HP:0033495,HP:0011143,HP:0012642
Patient_000044\tHP:0033432,HP:0005195,HP:0009062,HP:0100617,HP:0033586
Patient_000045\tHP:0011740,HP:0100159,HP:0033480,HP:3000069,HP:0011394
Patient_000046\tHP:0033350,HP:0009840,HP:0040247,HP:0040204,HP:0033099
Patient_000047\tHP:0030323,HP:0032005,HP:0033675,HP:0033869,HP:0010850
Patient_000048\tHP:0003411,HP:0100953,HP:0005532,HP:0032119,HP:0012157
Patient_000049\tHP:0030592,HP:0011691,HP:0010498,HP:0030196,HP:0006414
Patient_000050\tHP:0001549,HP:0040258,HP:0007078,HP:0000657,HP:3000066
"""

hpo_sets = []
for patient in patient_source.splitlines():
    _, terms = patient.split("\t")
    hpo_sets.append(HPOSet.from_queries(terms.split(",")))

gene_enrichments = batch_gene_enrichment(hpo_sets)
disease_enrichments = batch_disease_enrichment(hpo_sets)

Development

HPO3 is completely written in Rust, so you require a stable Rust toolchain:

Rust installation instructions as on the official website:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Then clone this repository:

git clone https://github.com/anergictcell/hpo3
cd hpo3

Create a Python virtual environment and install maturin:

virtualenv venv
source venv/bin/activate
pip install maturin

And finally build and install the Python library

maturin develop -r

Aaaaand, you're done:

python
from pyhpo import Ontology
Ontology()
for term in Ontology:
    print(term.name)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hpo3-1.0.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

hpo3-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

hpo3-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

hpo3-1.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

hpo3-1.0.0-cp311-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

hpo3-1.0.0-cp311-none-win32.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86

hpo3-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

hpo3-1.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

hpo3-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

hpo3-1.0.0-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

hpo3-1.0.0-cp311-cp311-macosx_10_7_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

hpo3-1.0.0-cp310-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

hpo3-1.0.0-cp310-none-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

hpo3-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

hpo3-1.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

hpo3-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

hpo3-1.0.0-cp310-cp310-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

hpo3-1.0.0-cp310-cp310-macosx_10_7_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

hpo3-1.0.0-cp39-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

hpo3-1.0.0-cp39-none-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

hpo3-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

hpo3-1.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

hpo3-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

hpo3-1.0.0-cp38-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

hpo3-1.0.0-cp38-none-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

hpo3-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

hpo3-1.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

hpo3-1.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

hpo3-1.0.0-cp37-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7 Windows x86-64

hpo3-1.0.0-cp37-none-win32.whl (2.2 MB view details)

Uploaded CPython 3.7 Windows x86

hpo3-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

hpo3-1.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (3.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

hpo3-1.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

hpo3-1.0.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

hpo3-1.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

hpo3-1.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

File details

Details for the file hpo3-1.0.0.tar.gz.

File metadata

  • Download URL: hpo3-1.0.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0.tar.gz
Algorithm Hash digest
SHA256 43beb417a2ff10a66f7241124f5d3c1105e2b2601c83709cb239669f6deaf8d6
MD5 37881684b11c56871a9646a84386008f
BLAKE2b-256 807cd43c9ff36656e77b56e25145fb3e41a1136c7afb48f9db3bb81865f7fea5

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f536ca6302ed7caccb42c826afba1bcf6154b52bc7bff0add2d2e0d44d1fed1a
MD5 1c62032be9b8a185ab02a41265ccf35a
BLAKE2b-256 83d72d4f5a6f66934a12fcb34538595437efa2474d402602b7677f22bc02fabf

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 defcbbc08604f3fb60beef0ad69347cc8b6d2f9726e179ce68baaf5c80561d33
MD5 80c43b04649a30d7abef3b2a8fc9b5ef
BLAKE2b-256 40041f523b8446be6879cff4f50f4984c8d2469157a307a9e7beba8e898b8d39

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb6cd88ebc64e9ac7c1ffbffb936794351c524e1935663b5de51fce96c9d6c16
MD5 5183274f50ac2dd2566c0ef36d920fe9
BLAKE2b-256 95217c7b299e889fbb01af38852b813f2820487d4915d44a411bd0f4742c9a53

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 53f59db5431c6880b507fccbf2dfe75e3ca97b334d4bda3b0a3264aa26fb787c
MD5 9e759725f7f36840421df7752d8c1d91
BLAKE2b-256 0e5d31cc69a8c85f4e74428e11e045003c96e35602789a1b4ad78300fe54659d

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 982d6b54771909baef6c8fe5143bac047df5986e02e273e5ee27d3652923012e
MD5 8a794b95e93cf3d94eb3cfa394eff91b
BLAKE2b-256 be7d9d14ca84173b9f9a8fdb3eba00b973338e53cafe5ac2abb81a47e391e599

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 54f037464cd281baa594d5fbf7a4b6af970790c62bcf29f807368167151ca601
MD5 6bbcb93def04346dacb9bd902254262e
BLAKE2b-256 7993069fa9f85c81912cc626e5a70251c7856a5e293171f388f158ff43b0aa57

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 35e65ec4c44fb2ea968846018de1ec4bef4e61d8bcd307329237b081e23ac40c
MD5 27081972b9b10d490c7c62a4282cabc2
BLAKE2b-256 16c268d11f22ee0c99e44e27eba8fb5e9b115b0e292d7e2e1251182927d5f77a

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8b7dc9a1c499f477981a8ca1827b2364285edc3eabc8448e7f3e98eef11faa44
MD5 4a49950a5ed893415e934549642e5210
BLAKE2b-256 8d5561d23461569fb886bdcc8b8753d6cd0d84f1d1ff8b105d758f7895e4190e

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63b25fdea24fa41a3d679266610e81d83b93b1a1e679de67f2278336d468334b
MD5 0fd974ba3623fe82b4a200ab6a84c7c4
BLAKE2b-256 b14967f532af0b4d960bacb1821c9527440bd235c92d2a3a97553a82a4ab923c

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b9b22fec6338fbf1b8a14cfb1a74070af4985e3f39ac630cdb5dd258a564d363
MD5 9c0d037d5b2474328a1114e640c75e7d
BLAKE2b-256 5df8cdca89052cfba546e4eb1bafcf8473c65f35eeda821696a66687c3f4ef28

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5bb8a7bfc93e1ca4c4fed6cdc9db182365236a8a456701b5ca8b400d7b035b8a
MD5 3ba9c5f9538d1f7019f4d6b6a1612c2a
BLAKE2b-256 126e5933ed0a693a547107ea126831cab4574293e55d67949ec32c472050fac8

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9dd9c1cc45c804e8e74dddbd71ca49a82eeb6e8af7e2893b892579221cc817e3
MD5 ec705740f3642e8ea03aeecfcd8633a8
BLAKE2b-256 e2cb68c71147645ffca4454643721ca4cbf6e60831365ac9acb1da9ed7795016

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9220de86a19a86f83db30de9ee9ab8d58ca0829077b9f11a40d9e4a4fd26792e
MD5 4f293446c61ae30250150b4dfe217628
BLAKE2b-256 816ecfcf17fe49c0a061eed3548aeb4e31826c2f9c3155c58d219598ca4350aa

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 be3f55f2e76b6d838958d7c0e8bff621971136a228b5eb92008395cb36bf7ab6
MD5 2522b35e210c8e7c21ce438ebb7e17e5
BLAKE2b-256 55647d214c7da1c70120ab48ac69365e4d29e405aa03b41afd68fe0eeaa2def8

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27145fc391cc073e122461eaf9c972aa92417ae06238f750ad3f65eeab68f750
MD5 dbd75bde345433b80782f777f4a0845e
BLAKE2b-256 3eeed1d04b935128cc6d937bfc97179e4b017de3d1f7fd49b2f96118422f4d39

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1bab146a1ceabf430dfda9473a8202c12d35822d349c947250a64c9a8a7cbb6f
MD5 458da0f29b42b5d085abd1bcf174adfe
BLAKE2b-256 2240b6521bcf15b566bef126c306f8335e7e46bfe510ad46604929bbbcfacfca

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6f4e47c707989eb2e6f4a3c48acc120c3c8422835e9a51e9dbf1fcd7b661c96c
MD5 33425fc9ef9834114301269c7cdf616f
BLAKE2b-256 b65282ac318de060f818f787e3032d54b17ca238e56545d080c6598cdefcbb36

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9025112141fc75eea5767152c8ead260a428a878c83d64a1a44958831af13737
MD5 c508491c1eef682b7b7881d5fef0f9c0
BLAKE2b-256 dba9cfcd8b0a27e97fab003b840b1573afbea9920e29e36f85da557f7f11b1ee

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3462302827178fa270ba44f20a2a1da7a34ffbcf4d1fb1b98547c140e7ef20aa
MD5 8dcb445df462e563ea6d6dc64bfeb9a8
BLAKE2b-256 19e4e03836b19572ec9f3a136b86ba4c77aa469a0c16007c2192a586a40bc8ba

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9a6689f80f9cd2ceabebfdd2b156b5504aef59a8865cf4275aa6f7f6d31420b3
MD5 99254bb6559385df369726e1f601c523
BLAKE2b-256 52fd9fe72b23c6f32806d26e20e90c9b6f85fbcaf07ad0ab68c8c32d878d8ba6

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c910c495a9e80c2f613aaed3a92c9920bb38221536e90c71f67b1403523008e0
MD5 76cbf3b0d6309a1096559a2e2ce5692d
BLAKE2b-256 fff7ed88f855c1efb347928413af978702433cfbfa0414036862faae96ef2bf0

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 10f7b901d0467dadf6f2dba6d7cdf9e492431f39f15b5c9f5b5690bcd67482a6
MD5 eaab9360dd765d3c8601f838f5c82b4b
BLAKE2b-256 89c4f07f626b9ed196bec79e72bd8491bc4f9f9846760c03d459b1a03eeca678

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9cb8b449866bcfeaf6044a152a2218bfc8faa3c0fd1938fbffcc1846f8d5523b
MD5 fbb9ab5f6e4dff5a4d78d855e0c3d8be
BLAKE2b-256 d1a7fc447e080109a9ab876d2878fe933fa5c2a3b26641b5a002599b156f6d4d

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 794eb52856e8544220dd9d41947fd962cc5dd3d3e45123b2382edbaf771db8fa
MD5 c67ec3957be3fc55f5d2d8f90959c791
BLAKE2b-256 2beaa80b047629f0ee49e6968e88a1911b194f337d4f636693d3c74ccdac0ba8

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 933b577cb2df826ca7e19603fc1c4e9ee2e465cb8371954691f76f82cfac1766
MD5 db0d8e98d1136a4b061a7df40b724bc8
BLAKE2b-256 9b632a4c8a400782dd92f27c62235c49530cf1db77570f93a87bca1bdb107513

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f01f63bbf73984bf4ccebed418542552e9c139ad56156f55ee47470aa144f4be
MD5 828687911941ee802f1a5504e77d290c
BLAKE2b-256 4182627c732cd78c35bc2d87adf8d1df3ae8a284ec74ac4c486740fa490b5368

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-none-win32.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp311-none-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 c2443c86351409a489d8cb665448880c55246769f7c998577f91bd16c933a131
MD5 bdb9e23a1c889c6b32a142794a50c6fe
BLAKE2b-256 0a6c46b0bc4b9d7b270a43dded0912d13a1cabaa84771ce2964b1c08444ff08b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5235178cc982761a74dbcd2d82bf307f4bffb0eb7d118344a32cc5467d6a5ce4
MD5 6b3ceb74c0633a16ffb561e97d6e907b
BLAKE2b-256 a2875daba0748d4b7504ecf05906e151107c5849ad0c7b742d6164311a0aaf66

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 24a3f18bea54fafc7f4055a4106587a8d89933fafa7864819e3560a9c2e5b1eb
MD5 2f6ac9943b34ea1099c0524eb0718afc
BLAKE2b-256 faf48e845691c448b3b079b5c6eb9e6e23db91c692f04ea172ad8a6ad8addb64

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2cff2bac11724f41da542659a51cd30a0c25acb320574872712420ab607da6f6
MD5 07313704716466c0af3bee97e7a07c37
BLAKE2b-256 f172848032cadd4c3cbd463364323bbba825139e35b86f87fda7df772919331b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5ffb83798e857e6d85c3e0e25dd663b4a1a78f64fa8d3cd083d084b14db73d24
MD5 7058f0afef3fafb054d8b9dd9436c41a
BLAKE2b-256 d4461f61a8e2193ecb18752ff5d453a857bae297e087d2740195e38c016cd798

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8f6eae80e8a7ada7c28c6b171fea5b9ba9eb2026cf484ff47772a5ace7b1484e
MD5 4e50242ebe3d9ae642f9539902cdf9c9
BLAKE2b-256 4299ade229369200be42e3062e4527f3c2453a17b3db5ed9e5755166511a5d39

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ac82e1f48b437d8bbc6ea6d6040647371d51cfa99300d1786f7c48bbcc622273
MD5 c3cf2871ae3d3d581bb6b95c6ff415d5
BLAKE2b-256 4dc3786214bc409b5fcdd24b4dd0bb1789d0027ddf54dabc04fc0102efe4ca9e

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fcea92d60345e4bf27b3df50e2dd27e972328937ed8fbcc3b2c5e1aa095b89d4
MD5 09fb675d2e1736e7163d53da2642939d
BLAKE2b-256 2d8efb42eb1ff0fb06367e0d8f4fd5101f4dbe67835eb877611a3a44634d9733

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8d5ef0c793acf1f4c1efc1a77f3f88bff5a7459991bb5ab344d4439ff0559aed
MD5 c5583446ed50d593bacfbecced7f5ff4
BLAKE2b-256 2c1f39d2bf1ccbe47e14f18af2d6d116e650e555a9bd4b67baef8294670c1138

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ee2ba996247faf50fa8feb48a7cba2b52cf208165634c3ea10bba2f092b7a4bc
MD5 848707665f1f3f77262ce4996aeedba7
BLAKE2b-256 a2c1359a83ca7c951b35fdb78431858ca7081d8454fc43fe876d094aaae08bcc

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-none-win32.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp310-none-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 4b672b5a3a4c44f4afa6b38ddb6eddaf63eb98daf20081c021c8474c4349c949
MD5 26525e161be856ae383938111868aeeb
BLAKE2b-256 7a448ae6692738363401fc7771743d8ec918467f3ae8537b28f13f149a49b1f0

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b2203fb76ef36b7107bff44141409246e600dc32ad12fddc562e4e70c935267
MD5 b7911997c679170644239ba88eefe565
BLAKE2b-256 96158728ba5673896155da107ed8a7fd6866b5d34c64d852acb48289fff62515

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a807c5c724a530319997968f37c8a21acee2fd4c75da601c65bfb42f4478d4f6
MD5 6a15e1c4381781a1e3e49a6b010cecb2
BLAKE2b-256 84a6d3442c018a03d0720894692ed28c7ce63cba7c9fba40c59660dcdb71ea7f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 745a94f473fba2cf80359a4fa5f3dedd031094e85dfc4230590a8cfd95c3b70a
MD5 01ed03c176b8f51bdbf653e14d194237
BLAKE2b-256 107b5a5f6dcea4dafd33249d3be082c0eab8aeff634e4c12a4acd8fd4e931a2b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5eeb680f647c733aef7823cedadafc196795a502a084f820b2b7150484fa211d
MD5 ea92f2ee86f018107370b8c2c511cc8c
BLAKE2b-256 50855d581b4b644d4c56afa203484c91be694babae89c32fb1c9a9756b0a2498

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40c07d7c9012117d10c8f1e490ef767c946de815ca907739fc30e000884ef604
MD5 2eeca96fee912bde725da61381a73d08
BLAKE2b-256 52f212be56747ee65ba1b211bf795c58a5477ad6ff5dccbfd02d28fee55062c4

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e7ec614822efa9451d9f33283098250352871ec7ed6fe2c4a3e8dfc15dc15f50
MD5 136cec77f74546e4e1d322a2c42abb76
BLAKE2b-256 550084c934e27463d7f9ec20de2aa1861b76ab5673551b8a9d977f0d89159945

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93fd54a2ecf7e06c422a080040476d2a743f4116d38c097208ff7659abb9e969
MD5 c806ae3c2be792a65f520dd4068f701f
BLAKE2b-256 e7806979826ac0aa187264eb3696cfc33961ed46dee8a3ff5f22d5eac32322cb

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b6266d83793fc3b7ca8f3eb3a17c462fec6bb91d5bbbfaa8798931b2e4d28419
MD5 723f64a86c923a5198cba3fc8223e9b7
BLAKE2b-256 3647dc7877cff372882b5e36dbc94b4396c093e7eeb172f3600c939fdf1129b7

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 3ffaedbd901cff4e837c587ec6a4786630d3ab2f7645062042977ca4dc387a12
MD5 7de5ad0e14b2a0eebf8e8123614146c3
BLAKE2b-256 00348dc6be4c277a6d87ad671fe60ac36bd44c886ef0027c309e9f616fae2928

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp39-none-win32.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp39-none-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 aa8d1cb2bab01c317fb7e2151c1a9fe006223b1172d674e551f681c37ba04c7e
MD5 4cf35b74fcec3ff3951815f195f74b0b
BLAKE2b-256 997c8979881bb19eccc72d804fe7c3695a5a5f77ecea6575d4c6c78a16496f9d

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b38bd7fa505e12eb23c03279278f67a8acd6045eb5b0c868715baebd64351d5
MD5 62be805a5ea8a815424412d2ee29cb09
BLAKE2b-256 1b18b4d6db373aff65a9ad9a5d8906bb0d07e910e7c996e4c937e77baa611880

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5c7b2988a071fbf795376e47fa8ac261a487fb59bcedd63cd6e0157fc850c65f
MD5 ef771f2011a61cfacd57a187f57f095d
BLAKE2b-256 23fc4897f2171b3dfb7ac46bb0e3e20642694dc333e489c50d75ac130af70a86

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 41a9b88d134227a1390695fa09df2f2f3e715e81266b8426dd8ab83c2bb768b1
MD5 0ab57261186706bea0057093785e83b6
BLAKE2b-256 65cff39ce81387f8f897969d1aa9566a4361d79f79a78d384a7eb21f4d076150

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 82827d74deedf5668b409a7cbf90b3adf4fc0f4cf49dba016746d51257874357
MD5 2d42e2f849b7dbb84e3fecc72647f275
BLAKE2b-256 21bc670a7bca9236c6390f5822bde8d6cee20abecf24ec61c3a4bfe06f3a5a96

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 905a7a36fe7028f23a45e930f11ee1cd41bc707a6ccdfbc69998bd612e370940
MD5 4d14c7cb00ce8b84f4bafd5f99755e67
BLAKE2b-256 17aad9bd5017b3abde99baec509c2ed1c802ae676952a206f74fd011a52d944e

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7f172f7249365aad85e98489a69b68e8154c9d2e989c881ff281c1e1e4a65b93
MD5 5c01cdb4cccfebcf95dcc98704e09ed4
BLAKE2b-256 86f14172af2caface11c82523a69f68d09a9805f4c2c2e716e127f82a92f43f5

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 a47799980c0d3ab75a9c4a4a4c64dd4a0802adeb54612a5a4500c3e843a352e7
MD5 ac40ca0a6a558254f3181905fff62f4b
BLAKE2b-256 98b379b8ae126ff4e143e5d07a76fa1dbe0cdc78aaac0eaad27003b1d99610d5

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp38-none-win32.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp38-none-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 1170943b9d59c552ee68ec151bb3e1c01a9cf3c6044d8e957579e47077dcb603
MD5 92d99dd9088eed003efb109801d85a61
BLAKE2b-256 fc28e589387524d284cf4c3acb14da101df35985e023213d0f6e8d3b5a88b343

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 769d5a6bf1d954acff6a2e8ac8c6f161a8338d195ad792e607d11ae0d624d22b
MD5 efc6767207f1dac80191034b7f75a2fa
BLAKE2b-256 f54be9d6d79fac64ae2ec8df28169d296a0214e8e5d1929be10a0cceab2254a8

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f785c3a2f67440d1c363b13307a19e9328f5f7711ee5f004f2856c18942911b3
MD5 dd1d65074b0178bac8dd9cf482942388
BLAKE2b-256 4d6831cea28a7d2fd855ed8fe508af3fa8854570bbe8a64545a15acfc10a8f21

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 84a5d4afd37c57c6838f04a72abbcac7f70e95cce998cd5a88192c2584e083fb
MD5 8e2a68907adbacaf1b0b9fd1c911e6a4
BLAKE2b-256 dc13fcb8e8dfcc5b9d28e031c928df37f2590ee61a1ceb1b523a7ba6d0e8a087

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 eae715b5d1499a1dc848d8cc0205093cc3950a5f09d12f3405bfc381aabd6530
MD5 bb2e69b1bdff318017f0587f6fdb0792
BLAKE2b-256 e1f7499b0a93c505f9ceab9e10639b81249a21e77d844080694258c9607e534f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 69846b74f25bbd9d6ab63ad31b14b420409018afe4b2b683aaad8cf77fea03a2
MD5 dd5b120042bd8a8a6cb366a5a03c59b1
BLAKE2b-256 456624e47fbb3fc2f97728465c6eda04b088e63c545493d9e07ccc9828eeb1b2

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 992b4d37c9a835cac80b833c6ef4416155f5a0c26e70c0c0b3db9553719c5ade
MD5 54efadbbac5e99c37fd143700bfa6c72
BLAKE2b-256 1db25de0e67a600ff0cc5005d6c63fea47074cb01e09079b42149eab7154827f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 407a66703c06557241afe1845894637bd1c4f6f729ae0e9e8349e86a18da435d
MD5 3451cd8063c743eaf133b897c929f79b
BLAKE2b-256 eab638d1427f6a9cdbb8e61eaac5d68dcd1f75ab8c1b5690cd884122c9ef94f3

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp37-none-win32.whl.

File metadata

  • Download URL: hpo3-1.0.0-cp37-none-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.1.0

File hashes

Hashes for hpo3-1.0.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 87332937844c0f86cae29bebf1e56fb1d30bb2507d1206a922d5b455d4df45ac
MD5 7d3fdcafcaa95db7e74cbdad87d2e98f
BLAKE2b-256 75ab82ab3f07962181c52eb85cb83994eedf409a515fc7daaf7393b9dc056882

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 acd1833618e7911004b3a702433b1d03f173c37912c1c4ca49d8a464380f3048
MD5 e0ce15692c3e898c22f7ce48d8bc8e5c
BLAKE2b-256 bd815b4b3840423387c3d95b1915d4a0ab10a2f78220bec0839e47af539d23c7

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e48f87fc061dc898c9ce0b9b9a79f8f932a5afa7134f806f380d2f6df6ca35e2
MD5 49e81b8c87926fa59de3f11aed535427
BLAKE2b-256 52976fac811b2491652cce5186415c6c4a38a361302c7a3f103895f0bb889f67

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 44e6ade870c0b7f735c5ad5f2050af1a035c684b620a7f7c2e28690d93a061b4
MD5 98c176983d23ea9bc011ed55f18a9b17
BLAKE2b-256 16cfb54cde54415734a5d122a24aad79171c93c742071a6753aebfa730920567

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 be5e227e5568259e231694569f6734164618ab1fd7f224029200bba452ce9d8e
MD5 af43cfb353fcc04430c2567c6a57777a
BLAKE2b-256 cc0936b512616bd93d7c2e0e7bbc1cccf4188655a6e62541fdaa437136d81210

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 818feaf6b02a2d2545358af38a2b16d4922ef4dfed7142c42003db3146dd31bb
MD5 95dca57e55d19f0335c426d81e534d00
BLAKE2b-256 e912f647a23f23c18563302e3c464027d03b8c46215f7f6d5e350c9f8682d4d2

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1c9a5f2678a564c32e9a5a2f12c547d7d6d54347609caa2ec0813cac457cdf41
MD5 e9053f7863df5ba41158a24aecf62729
BLAKE2b-256 5f2464ab71f9da8e17b38d3e59a38ce8c282ba6cda46faabc6d0d9afd1ba8535

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page