Skip to main content

A Python package to work with the HPO Ontology using a Rust backend for faster performance

Project description

Documentation PyPi downloads Latest release

HPO3

hpo3 is a Rust based drop-in replacement of PyHPO. It is based on the hpo Rust library which is a performance optimzied implementation of PyHPO.

Main Features

  • 👫 Identify patient cohorts based on clinical features
  • 👨‍👧‍👦 Cluster patients or other clinical information for GWAS
  • 🩻→🧬 Phenotype to Genotype studies
  • 🍎🍊 HPO similarity analysis
  • 🕸️ Graph based analysis of phenotypes, genes and diseases
  • 🔬 Enrichment analysis of genes or diseases

hpo3 allows working on individual terms HPOTerm, a set of terms HPOSet and the full Ontology.

The library is helpful for discovery of novel gene-disease associations and GWAS data analysis studies. At the same time, it can be used for oragnize clinical information of patients in research or diagnostic settings.

Using the Rust-based hpo library gives super fast performance that allows large analyses. It enables developers to utilize multithreading, further improving performance greatly.

hpo3 aims to use the exact same API and methods as PyHPO to allow a very simple replacement for all analysis and statistics methods. However, it does not allow customization and modification of the ontology or individual terms, genes etc.

Installation

HPO3 is provided as binary wheels for most platforms on PyPI, so in most cases you can just run

pip install hpo3

(For macOS, only Python 3.10 and 3.11 are supported, for both x64 and arm at the moment.)

hpo3 ships with a prebuilt HPO Ontology by default, so you can start right away.

Examples

There are also more examples in the documentation of both PyHPO and hpo3

from pyhpo import Ontology, HPOSet

# initilize the Ontology
Ontology()

for term in Ontology:
    print(f"{term.id} | {term.name}")

# Declare the clinical information of the patients
patient_1 = HPOSet.from_queries([
    'HP:0002943',
    'HP:0008458',
    'HP:0100884',
    'HP:0002944',
    'HP:0002751'
])

patient_2 = HPOSet.from_queries([
    'HP:0002650',
    'HP:0010674',
    'HP:0000925',
    'HP:0009121'
])

# and compare their similarity
patient_1.similarity(patient_2)
#> 0.7594183905785477

# Retrieve a term e.g. via its HPO-ID
term = Ontology.get_hpo_object('Scoliosis')

print(term)
#> HP:0002650 | Scoliosis

# Get information content from Term <--> Omim associations
term.information_content['omim']
#> 2.29

# Show how many genes are associated to the term
# (Note that this includes indirect associations, associations
# from children terms to genes.)
len(term.genes)
#> 1094

# Show how many Omim Diseases are associated to the term
# (Note that this includes indirect associations, associations
# from children terms to diseases.)
len(term.omim_diseases)
#> 844

# Get a list of all direct parent terms
for p in term.parents:
    print(p)
#> HP:0010674 | Abnormality of the curvature of the vertebral column

# Get a list of all ancestor (direct + indirect parent) terms
for p in term.all_parents:
    print(p)
#> HP:0000001 | All
#> HP:0011842 | Abnormal skeletal morphology
#> HP:0009121 | Abnormal axial skeleton morphology
#> HP:0033127 | Abnormality of the musculoskeletal system
#> HP:0010674 | Abnormality of the curvature of the vertebral column
#> HP:0000118 | Phenotypic abnormality
#> HP:0000924 | Abnormality of the skeletal system
#> HP:0000925 | Abnormality of the vertebral column

# Get a list of all children terms
for p in term.children:
    print(p)
"""
HP:0002944 | Thoracolumbar scoliosis
HP:0008458 | Progressive congenital scoliosis
HP:0100884 | Compensatory scoliosis
HP:0002944 | Thoracolumbar scoliosis
HP:0002751 | Kyphoscoliosis
"""

# Show the categories a term belongs to
for term in Ontology.hpo(10049).categories:
    print(term)
"""
HP:0033127 | Abnormality of the musculoskeletal system
HP:0040064 | Abnormality of limbs
"""

Documentation

Check out the hpo3 documentation

Parallel processing

hpo3 is using Rust as backend, so it's able to fully utilize parallel processing. To benefit from this even greater, hpo3 provides some special helper functions for parallel batch processing in the helper submodule

Similarity scores of HPOSets

Pairwise similarity comparison of HPOSets. Specify a list of comparisons to run and hpo3 calculates the result using all available CPUs.

Assume you want to compare the clinical information of a patient to the clinical information of 1000s of other patients:

from pyhpo.helper import set_batch_similarity
from pyhpo import Ontology, HPOSet

Ontology()

main_patient = HPOSet.from_queries([
    'HP:0002943',
    'HP:0008458',
    'HP:0100884',
    'HP:0002944',
    'HP:0002751'
])

# 2 column table with
# - Patient Identifier
# - Comma separated HPO-terms
patient_source = """\
Patient_000001\tHP:0007587,HP:4000044,HP:0001845,HP:0041249,HP:0032648
Patient_000002\tHP:0034338,HP:0031955,HP:0003311,HP:0032564,HP:0100238
Patient_000003\tHP:0031096,HP:0410280,HP:0009899,HP:0002088,HP:0100204
Patient_000004\tHP:0030782,HP:0011439,HP:0009751,HP:0001433,HP:0030336
Patient_000005\tHP:0025029,HP:0033643,HP:0000957,HP:0005593,HP:0012486
Patient_000006\tHP:0009344,HP:0430016,HP:0005621,HP:0010043,HP:0030974
Patient_000007\tHP:0010760,HP:0009331,HP:0100119,HP:0012871,HP:0003653
Patient_000008\tHP:0001636,HP:0000561,HP:0009990,HP:3000075,HP:0007333
Patient_000009\tHP:0011675,HP:0011730,HP:0032729,HP:0032169,HP:0002888
Patient_000010\tHP:0004900,HP:0010761,HP:0020212,HP:0001806,HP:0033372
Patient_000011\tHP:0033336,HP:0025134,HP:0033815,HP:0032290,HP:0032472
Patient_000012\tHP:0004286,HP:0010543,HP:0007258,HP:0009582,HP:0005871
Patient_000013\tHP:0000273,HP:0031967,HP:0033305,HP:0010862,HP:0031750
Patient_000014\tHP:0031403,HP:0020134,HP:0011260,HP:0000826,HP:0030739
Patient_000015\tHP:0009966,HP:0034101,HP:0100736,HP:0032385,HP:0030152
Patient_000016\tHP:0011398,HP:0002165,HP:0000512,HP:0032028,HP:0007807
Patient_000017\tHP:0007465,HP:0031214,HP:0002575,HP:0007765,HP:0100404
Patient_000018\tHP:0033278,HP:0006937,HP:0008726,HP:0012142,HP:0100185
Patient_000019\tHP:0008365,HP:0033377,HP:0032463,HP:0033014,HP:0009338
Patient_000020\tHP:0012431,HP:0004415,HP:0001285,HP:0010747,HP:0008344
Patient_000021\tHP:0008722,HP:0003436,HP:0007313,HP:0031362,HP:0007236
Patient_000022\tHP:0000883,HP:0007542,HP:0012653,HP:0009411,HP:0031773
Patient_000023\tHP:0001083,HP:0030031,HP:0100349,HP:0001120,HP:0010835
Patient_000024\tHP:0410210,HP:0009341,HP:0100811,HP:0032710,HP:0410064
Patient_000025\tHP:0001056,HP:0005561,HP:0003690,HP:0040157,HP:0100059
Patient_000026\tHP:0010651,HP:0500020,HP:0100603,HP:0033443,HP:0008288
Patient_000027\tHP:0012330,HP:0034395,HP:0004066,HP:0000554,HP:0002257
Patient_000028\tHP:0031484,HP:0100423,HP:0030487,HP:0033538,HP:0003172
Patient_000029\tHP:0030901,HP:0025136,HP:0034367,HP:0034101,HP:0045017
Patient_000030\tHP:0100957,HP:0010027,HP:0010806,HP:0020185,HP:0001421
Patient_000031\tHP:0001671,HP:0003885,HP:0001464,HP:0000243,HP:0009549
Patient_000032\tHP:0003521,HP:0003109,HP:0000433,HP:0030647,HP:0100280
Patient_000033\tHP:0006394,HP:0031598,HP:0032199,HP:0010428,HP:0000108
Patient_000034\tHP:0001468,HP:0008689,HP:0410030,HP:0012226,HP:0011388
Patient_000035\tHP:0003536,HP:0001011,HP:0033262,HP:0009978,HP:0025586
Patient_000036\tHP:0031849,HP:0005244,HP:0001664,HP:0041233,HP:0030921
Patient_000037\tHP:0005616,HP:0003874,HP:0011744,HP:0033751,HP:0007971
Patient_000038\tHP:0012836,HP:0033858,HP:0003427,HP:0033880,HP:0030481
Patient_000039\tHP:0100369,HP:0040317,HP:0010561,HP:0010522,HP:0011339
Patient_000040\tHP:0005338,HP:0040179,HP:0004258,HP:0030589,HP:0032981
Patient_000041\tHP:0011758,HP:0033519,HP:0032010,HP:0030710,HP:0010419
Patient_000042\tHP:0002642,HP:0006335,HP:0009895,HP:0001928,HP:0003779
Patient_000043\tHP:0002867,HP:0030404,HP:0033495,HP:0011143,HP:0012642
Patient_000044\tHP:0033432,HP:0005195,HP:0009062,HP:0100617,HP:0033586
Patient_000045\tHP:0011740,HP:0100159,HP:0033480,HP:3000069,HP:0011394
Patient_000046\tHP:0033350,HP:0009840,HP:0040247,HP:0040204,HP:0033099
Patient_000047\tHP:0030323,HP:0032005,HP:0033675,HP:0033869,HP:0010850
Patient_000048\tHP:0003411,HP:0100953,HP:0005532,HP:0032119,HP:0012157
Patient_000049\tHP:0030592,HP:0011691,HP:0010498,HP:0030196,HP:0006414
Patient_000050\tHP:0001549,HP:0040258,HP:0007078,HP:0000657,HP:3000066
"""

comparisons = []

for patient in patient_source.splitlines():
    _, terms = patient.split("\t")
    comparisons.append(
        (
            main_patient,
            HPOSet.from_queries(terms.split(","))
        )
    )

similarities = set_batch_similarity(
    comparisons,
    kind="omim",
    method="graphic",
    combine="funSimMax"
)

(This functionality works well with dataframes, such as pandas or polars, adding the similarity scores as a new series)

Gene and Disease enrichments in HPOSets

Calculate the gene enrichment in several HPOSets in parallel

from pyhpo.helper import batch_gene_enrichment
from pyhpo.helper import batch_disease_enrichment
from pyhpo import Ontology, HPOSet

Ontology()

# 2 column table with
# - Patient Identifier
# - Comma separated HPO-terms
patient_source = """\
Patient_000001\tHP:0007587,HP:4000044,HP:0001845,HP:0041249,HP:0032648
Patient_000002\tHP:0034338,HP:0031955,HP:0003311,HP:0032564,HP:0100238
Patient_000003\tHP:0031096,HP:0410280,HP:0009899,HP:0002088,HP:0100204
Patient_000004\tHP:0030782,HP:0011439,HP:0009751,HP:0001433,HP:0030336
Patient_000005\tHP:0025029,HP:0033643,HP:0000957,HP:0005593,HP:0012486
Patient_000006\tHP:0009344,HP:0430016,HP:0005621,HP:0010043,HP:0030974
Patient_000007\tHP:0010760,HP:0009331,HP:0100119,HP:0012871,HP:0003653
Patient_000008\tHP:0001636,HP:0000561,HP:0009990,HP:3000075,HP:0007333
Patient_000009\tHP:0011675,HP:0011730,HP:0032729,HP:0032169,HP:0002888
Patient_000010\tHP:0004900,HP:0010761,HP:0020212,HP:0001806,HP:0033372
Patient_000011\tHP:0033336,HP:0025134,HP:0033815,HP:0032290,HP:0032472
Patient_000012\tHP:0004286,HP:0010543,HP:0007258,HP:0009582,HP:0005871
Patient_000013\tHP:0000273,HP:0031967,HP:0033305,HP:0010862,HP:0031750
Patient_000014\tHP:0031403,HP:0020134,HP:0011260,HP:0000826,HP:0030739
Patient_000015\tHP:0009966,HP:0034101,HP:0100736,HP:0032385,HP:0030152
Patient_000016\tHP:0011398,HP:0002165,HP:0000512,HP:0032028,HP:0007807
Patient_000017\tHP:0007465,HP:0031214,HP:0002575,HP:0007765,HP:0100404
Patient_000018\tHP:0033278,HP:0006937,HP:0008726,HP:0012142,HP:0100185
Patient_000019\tHP:0008365,HP:0033377,HP:0032463,HP:0033014,HP:0009338
Patient_000020\tHP:0012431,HP:0004415,HP:0001285,HP:0010747,HP:0008344
Patient_000021\tHP:0008722,HP:0003436,HP:0007313,HP:0031362,HP:0007236
Patient_000022\tHP:0000883,HP:0007542,HP:0012653,HP:0009411,HP:0031773
Patient_000023\tHP:0001083,HP:0030031,HP:0100349,HP:0001120,HP:0010835
Patient_000024\tHP:0410210,HP:0009341,HP:0100811,HP:0032710,HP:0410064
Patient_000025\tHP:0001056,HP:0005561,HP:0003690,HP:0040157,HP:0100059
Patient_000026\tHP:0010651,HP:0500020,HP:0100603,HP:0033443,HP:0008288
Patient_000027\tHP:0012330,HP:0034395,HP:0004066,HP:0000554,HP:0002257
Patient_000028\tHP:0031484,HP:0100423,HP:0030487,HP:0033538,HP:0003172
Patient_000029\tHP:0030901,HP:0025136,HP:0034367,HP:0034101,HP:0045017
Patient_000030\tHP:0100957,HP:0010027,HP:0010806,HP:0020185,HP:0001421
Patient_000031\tHP:0001671,HP:0003885,HP:0001464,HP:0000243,HP:0009549
Patient_000032\tHP:0003521,HP:0003109,HP:0000433,HP:0030647,HP:0100280
Patient_000033\tHP:0006394,HP:0031598,HP:0032199,HP:0010428,HP:0000108
Patient_000034\tHP:0001468,HP:0008689,HP:0410030,HP:0012226,HP:0011388
Patient_000035\tHP:0003536,HP:0001011,HP:0033262,HP:0009978,HP:0025586
Patient_000036\tHP:0031849,HP:0005244,HP:0001664,HP:0041233,HP:0030921
Patient_000037\tHP:0005616,HP:0003874,HP:0011744,HP:0033751,HP:0007971
Patient_000038\tHP:0012836,HP:0033858,HP:0003427,HP:0033880,HP:0030481
Patient_000039\tHP:0100369,HP:0040317,HP:0010561,HP:0010522,HP:0011339
Patient_000040\tHP:0005338,HP:0040179,HP:0004258,HP:0030589,HP:0032981
Patient_000041\tHP:0011758,HP:0033519,HP:0032010,HP:0030710,HP:0010419
Patient_000042\tHP:0002642,HP:0006335,HP:0009895,HP:0001928,HP:0003779
Patient_000043\tHP:0002867,HP:0030404,HP:0033495,HP:0011143,HP:0012642
Patient_000044\tHP:0033432,HP:0005195,HP:0009062,HP:0100617,HP:0033586
Patient_000045\tHP:0011740,HP:0100159,HP:0033480,HP:3000069,HP:0011394
Patient_000046\tHP:0033350,HP:0009840,HP:0040247,HP:0040204,HP:0033099
Patient_000047\tHP:0030323,HP:0032005,HP:0033675,HP:0033869,HP:0010850
Patient_000048\tHP:0003411,HP:0100953,HP:0005532,HP:0032119,HP:0012157
Patient_000049\tHP:0030592,HP:0011691,HP:0010498,HP:0030196,HP:0006414
Patient_000050\tHP:0001549,HP:0040258,HP:0007078,HP:0000657,HP:3000066
"""

hpo_sets = []
for patient in patient_source.splitlines():
    _, terms = patient.split("\t")
    hpo_sets.append(HPOSet.from_queries(terms.split(",")))

gene_enrichments = batch_gene_enrichment(hpo_sets)
disease_enrichments = batch_disease_enrichment(hpo_sets)

Development

hpo3 is completely written in Rust, so you require a stable Rust toolchain:

Rust installation instructions as on the official website:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Then clone this repository:

git clone https://github.com/anergictcell/hpo3
cd hpo3

Create a Python virtual environment and install maturin:

virtualenv venv
source venv/bin/activate
pip install maturin

And finally build and install the Python library

maturin develop -r

Aaaaand, you're done:

python
from pyhpo import Ontology
Ontology()
for term in Ontology:
    print(term.name)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hpo3-1.3.1.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

hpo3-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

hpo3-1.3.1-cp312-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

hpo3-1.3.1-cp312-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86

hpo3-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

hpo3-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

hpo3-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

hpo3-1.3.1-cp312-cp312-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

hpo3-1.3.1-cp312-cp312-macosx_10_12_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

hpo3-1.3.1-cp311-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

hpo3-1.3.1-cp311-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86

hpo3-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

hpo3-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

hpo3-1.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

hpo3-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

hpo3-1.3.1-cp311-cp311-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

hpo3-1.3.1-cp311-cp311-macosx_10_12_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

hpo3-1.3.1-cp310-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

hpo3-1.3.1-cp310-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86

hpo3-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

hpo3-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

hpo3-1.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

hpo3-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

hpo3-1.3.1-cp310-cp310-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

hpo3-1.3.1-cp310-cp310-macosx_10_12_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

hpo3-1.3.1-cp39-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

hpo3-1.3.1-cp39-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86

hpo3-1.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

hpo3-1.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

hpo3-1.3.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

hpo3-1.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

hpo3-1.3.1-cp39-cp39-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

hpo3-1.3.1-cp39-cp39-macosx_10_12_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

hpo3-1.3.1-cp38-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

hpo3-1.3.1-cp38-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86

hpo3-1.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

hpo3-1.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

hpo3-1.3.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

hpo3-1.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

hpo3-1.3.1-cp37-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

hpo3-1.3.1-cp37-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.7 Windows x86

hpo3-1.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

hpo3-1.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

hpo3-1.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

hpo3-1.3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

hpo3-1.3.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

hpo3-1.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

File details

Details for the file hpo3-1.3.1.tar.gz.

File metadata

  • Download URL: hpo3-1.3.1.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1.tar.gz
Algorithm Hash digest
SHA256 a6747bfd9c8e2cfb2b2ced8a35622f36508383cd29fb60b756c642f530e4d37c
MD5 0aa1185ee0db67e707721d8c58a32144
BLAKE2b-256 56736728a5fabfca991df635d68a24d94f010348ed6c3c48adc26c0743809d50

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48c5e877c905a9f87bc66f6727d5259afe63c0aaebc24b8072de887652b3500a
MD5 ad4c801ba2b9abed9a6639de6f01d810
BLAKE2b-256 4f7c5740d622e3c92bcf1fe11b12c4e2fa222aa222e70425a0e1b4139abe3dab

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2179b37317c158f821846c25603b3953487c171fcc4485b74a419ccd6ccb329a
MD5 f48a12eea54d87264554cc12fb9e102a
BLAKE2b-256 ecb96d87dd351d2239ede830c02bcabb4c486ade55786ad199d801131caa0067

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dee41edb4dfc97eecc273b3631da018c6f1aa9c2d2a348117a0f8f2024245080
MD5 4585138661eac546bc57ab2d5fde6e9e
BLAKE2b-256 fb8395d7bf0cb523f117440420a0b618e56ac8597ac9f51fe69314b3b141cc6f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e4189fd3c1a12b2585884906badb067f415cde0f074242d39be6315dd964fcf4
MD5 ded6ee0e477e75e51a33b7bc43305088
BLAKE2b-256 5e23bc0767dfa76ed70d156b027f9be03be531558b1839abc2de51740c6012e8

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9d697316f2147330572e0487995ebf60fa1959db93f197818f5dc35352c364cf
MD5 1c63d710ab7163115672d5085fb409cf
BLAKE2b-256 62dde926d1dc29aa429ff8f6f9c151a357e27ba3e7f8f782048f12bfb753afe6

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76f74063d81e8e55daddb0cd5285f5de88bfa6f43c797f15a7be34e8d12f1f26
MD5 047238e1459762c5355f4217319d615c
BLAKE2b-256 50c8c80d1c79a565e102c1088c39b03926a133b4d2ac3f6aa8d86c0d626875e7

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 501e2c94b1cf552ddcd20e394e45d672cd5c2d9f5b3d836800619781d8bc63cb
MD5 3a1e61f650f33c18c6262644e295e407
BLAKE2b-256 e80a0ae830e92134e4e2c747a0303cb1b8644ddcaa4c20c7d78cfbf6590c689c

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a7933af8e454190c314b06830d18f15fe8502ba2213973e107b5626e8ba4478
MD5 ac000b6202146b026736fedef843eff8
BLAKE2b-256 bdcc15b91dfd4bbaf4abc2adf76f6ac93e040e88763b6c5c577a8c335d09ab70

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d6f0197225ad7a947d9ed2e2c5552da34666819663914fc3f51141f5402c850
MD5 62aa4c37240d120911e66575788e1c52
BLAKE2b-256 223198f39b4ace26dc6d96d68bafae0be31993bedd90e8c9637944b016741012

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 838aad03e4af5630b1dc33b4060e968f88612ace6c13557e7b854caf80c60639
MD5 3877b7143d7fe8a44560461a7d418b9e
BLAKE2b-256 4a797afcbfbaba7d29ee19ab6a6fc194184da7df13eeee2c98086cf51f67c8e3

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 06b8c6c5ad6239f3c865e87c6db846c07e0b3fbcfcbe7805e596dd2048bb7314
MD5 114a47a1e218b02d7ce762af4e530c04
BLAKE2b-256 82b91aa724813d632ba9c4339362abac79aade0dff496538e985b7163e1866f7

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 65e06804f144a51833fe58809e7d98d2bb5a48b2bd05495c5a74253742a59ef2
MD5 ac6ec5664cd7d3b02726197d020b362b
BLAKE2b-256 b3aef3f7e37ce49b3f9a763d3e773aba575de6d9748ba95c27b45797e0edca2b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 367146cbe98d431f428bac9eded3db550515da8c600a8f98e0ed5d7bdde865c1
MD5 0ce234a40abaa9f5f2931384d5a34ded
BLAKE2b-256 e6efee4f78354597b482f23564b5c7711ee2207453f96c51b1e5fad2a1658757

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32982985fb5f8048ec59ac4a43386812a80adc4abcdd16570059c204ac9f49f0
MD5 eaf001f446bb51d0f80d0b6a00642996
BLAKE2b-256 318ed814c451bd924a2cf6bcab27f87aa66043e92dbb8c1f3b0043bbb4eee0ab

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49ae392ea3573a86221463b4e8d13473f32c6dd991a91a1513aef8cb1bf7b50f
MD5 70caff8567277e4a48cbc3b5e21bc989
BLAKE2b-256 b2fe10090e0320e6550efad777e3ff4732d30a4125c3f6cb7a32a7c71e792d19

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 89dc4e67faf2c113c580fbad81e29d17134a6cbaff64047e669fdb2826dc7d0f
MD5 80247321dd5f9e6fef2e894e3591a816
BLAKE2b-256 ccc6bb6e89ba1ce1842cc5ca6be61dac200c94368daac1f1eaec41e2a10ced0f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 668ef489141dc31aeb8f8416ce68077a372850e7cddadd3d9d41f7183389ceb6
MD5 0a5bbea483339024c07e2b4a8c413639
BLAKE2b-256 354e66ef5437e4ae1a12593abdf948a8c68c7d1b5944571274c53ac02d321279

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c91c9efa9c922cc25ea8d74b1d7c4e9185cd056cb83ef2fa14304b2105675080
MD5 3fc9edcdd3c91b299b0b38638385a7db
BLAKE2b-256 f10e42cbf1e7302817577db464478ff3f9cecf1483ab2b3a4746995ce19cac11

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 80f57ab2d7dd809b3772b230a2193c6b0f1464e161868fae6fc6031c483751fe
MD5 b463c91a06954ca590d0cdc52546cd16
BLAKE2b-256 f309f25f9110ffc9d94e2bef8be42eb82d51d5a8bc01764e5966ea841fb0c45d

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb95329162fa2664254b6f31403497d84a2498fcad01c1137c0911aa47ad6243
MD5 411258b1dddf61032d94ac08b7108af4
BLAKE2b-256 cefccb6ed238eccc3d1b1d0458803d530f37e4e83c53cc89000ed25d7212eb96

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 3775e90e2b8153482fa3309edfa4cd082de20bc2fe72a116780987e04be56026
MD5 d17e08d57b6b022608294c1d4bb0d95e
BLAKE2b-256 b8bb53c50763f80f397d2f732627f3a5d3de20ba7b51a5174eea10a18f2feb96

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-none-win32.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp312-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp312-none-win32.whl
Algorithm Hash digest
SHA256 b22622ea1f38ededcc6835886ee4969c869573f501350d60009c8b108154797d
MD5 d57f0ec5043e6a8aed6d16e7258cb4b8
BLAKE2b-256 c31fcabdebacfdcbf1981a7350fd9b0fdebee59474fd61a32fea477822e3e772

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 029594bd67e22a9b3238314cff8af45c88a66f023fef8bcd5c9fc6ff13827603
MD5 494ab4ef166b37f1881e6415ca095c4c
BLAKE2b-256 bce343e38d065d90c88edfbf90c8182d01dcee38ad2dca3b1f0e903769320324

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2a1baa71d594a1a020ea60cdac886f02b61bf4351a90c2f94623b9385b69e7c8
MD5 59ba886b2a27b2faafc430940f8be8f9
BLAKE2b-256 a1d0aca7581800a0d7a0509d87f38e9da7870d81a932a740675395c26c76af49

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 05e7431d09576300c4ce52e5b88f837d005d0267f778f62eba12841ec94ca251
MD5 e3f46e627388a9887c51cd768f82657d
BLAKE2b-256 0f9f58562862d553727fd366e12ae14d79e876af30491866a0e253f5b58ef9ac

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb051d52f66a2d243c97d501205b5647cae48fac52cdba7cae0ca7aae7d9172a
MD5 a49b0aee86ddbaf184e493ba5944eff5
BLAKE2b-256 864c19881ac89d116640bcdbbccde8704f98e222783307af9c5c491a774ee36b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7da1274cb35684b526d32016d7c6dc9b5785fda947b50ea7e0f7f7c13e52ac2f
MD5 72b9190639c84578085cf1ad06dc3c72
BLAKE2b-256 b21009b3ef30776cfd5f3bda5566d57ccb4d72e495d7828313b062f0918cb4d4

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02c20e1af7df37955292736a9aab3d482fe88442ab93922057ccc89f9ea0acdc
MD5 b9396429c76d4c720b40fc272e3e4fff
BLAKE2b-256 edeeee2977f3dcdba197430c07e1289545455d6ead991070fc87737465d095fa

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 efc483132febfdab7cb2980751c6af65a89a9951f3d52db6dd3cd1d99177db27
MD5 7442632682fc3ca1cca68059a382b563
BLAKE2b-256 d80126403b0add79185ff8f6098b97c56cb16450561f4d6addd2568d8eb198b4

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 99e87902c96812476011f4961be82e3acd6b9d8c6ee4cbc054ac1f5ab33a3925
MD5 ecb783e17025086d286462030059b9f5
BLAKE2b-256 24bc40943e51233fe4affdce1ff8c66231049211d1c8097d3f5894895b6b1171

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-none-win32.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp311-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 537b5cc3c9c555827875644e7d4fc56cd9c9b5e1fe829bc886f64ad454c3e282
MD5 b17d36a3f5b6a34f4f97a3fbd4688241
BLAKE2b-256 4abe95b10d25ebd5b71450b5666dc273d5209a82092b1854843118a17475ffba

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 126624b57ec8b3897e898baaf5e0d1b00d2a3542268f69e247dd783222bb19fb
MD5 e842b1bb65450026b539826c1997ed65
BLAKE2b-256 3a8608b8c02e2955bbdd3313f129fe9096e9b22289af3f1eb70f1f4c1078dda3

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c8cbfdd88a0353fca33dd1334acf0038cc4be47cf9f239a4793949a100a016d7
MD5 36d98f70ff0cea7412db0f7823ac5627
BLAKE2b-256 d52c4946e0daf1422d778fc669b526ee2e76f903cad24510f33293c16715aa20

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a85a3e46ddf7f67986d94fcab54f77c28db4f9f8eded71b2c9e9dda846c5fa55
MD5 793f05214bd0c5116c368f4117581ba9
BLAKE2b-256 f59a34ac6b2970915167be3153ef32658e9eef1faab60936a514ca7219c31562

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fd6286b734469d56c04be5b049e43b81d8a4ecdc2519ac2a68bf6bc93006aabd
MD5 e7be10bdc63ff671cbd5666cde0a7c57
BLAKE2b-256 057946b3ccdbcdb993f4932c2e178de7d75985775a862cfaed1ada7fba41cbe4

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ad53b7b79ab8ebf759723a0cf61c40c58e8d7f9d520ff6a56777759933229d88
MD5 b675b1ba4fa057a77fb1d614640b51ba
BLAKE2b-256 25dc16edb2653478bb3f07dce86f7c3a4c63464aa330749d4ff94aba8af39b35

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d687f7a5023f8ac79c18ed331f6f18197e014bac993919d8a8e90bf69fae09e
MD5 c118b4954768cb4ae8cdd343db66364c
BLAKE2b-256 36c9b7a33d361c0548507a0d2dab590ef8a5922fe68de364e817664eefcd51d2

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a4b5a3d8e72a3dd40d584c2fd49bdb4b2f74d6d37532524053c553c3a21c1ac
MD5 a91695201e59729f9e8cdd3d05cd19c2
BLAKE2b-256 42bc9ba8f7bd39ef57bed24687d24733a687236a2d17dead000d109e82698401

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d53c5116995d4851d51b81a059426a8356cbc618017139fe61b54a99531a4d47
MD5 d83dfcb0a4aef27189fa1fbe1d7f9b7b
BLAKE2b-256 be423bb335f7dcb1f536a2fa44188ae391bf6fb2af9dac4dc08dd8e8cf5c728d

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 88420d6ae54f64e6584ea1d2b6a57f66a44ae0526c2cf4c30ec0c218691710e8
MD5 fa642b91840241c54c8d05e1f3dddde9
BLAKE2b-256 e667eeff2e48b4cfa162a9135a8d004941e5cec88cbefdcf8bd58c6f04a77b3a

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-none-win32.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp310-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 8f12c3d176d8d0019edec3ccb90269a87c12c2f7196b58587bdeefd0c1c8cb75
MD5 226f95b81dc1f38a9e3122657ab41587
BLAKE2b-256 d497bd30db1e67536ce638403c57452cc78176694ebea58e1271a6a6dcc4b28e

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3a060ff775c3f6fc6b539bf1e77921b024a507209bace8870fe5a58a0232325
MD5 52f77f011bcb6f88d6f83669fb1410ed
BLAKE2b-256 c12ebad999993b330ebc1f0a3f0b746a9d34c26b08b5fdaecfdb0ec54265aec1

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e27091b8e580ad9b57708e482e8c14f8788b6b034692d6866c2c66f661e1d52a
MD5 aeb392c4d070b65b80deb91ab230b259
BLAKE2b-256 c994ac687b0e1b3076b9710800cbb842f95eba4700bb23b02e847c159645c9e3

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 61a245b78a3da24a7c80a3c9853f26618ce1f6c4442eb6185c4b0a05d7896797
MD5 234ae854f9aa8b32f03bab75dd24eb95
BLAKE2b-256 f6d925d66d61a170354e2705850ac3f12dac1bee7ec035faede324c6b4b44c40

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 517ac908ce17f335637462ee3c80e98bd771f05c4c8065c1b51caafc4a4ccc18
MD5 5ff89d116036d10111fb7d90f129f7f8
BLAKE2b-256 2e7e6f11a7facbb99a03839c555e11c9a34938b6bbba910e11f16f1fdf0c0404

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7995ccf04d801c8494c4229f3155c650404ef71ea258fe437726dd74f649ffe5
MD5 efbf1dfe2f346bc8f3b37359f17bfb26
BLAKE2b-256 67d3c4c0041bb524e0e9c9a46f4faef69bf347678ab4f57fb965f19ed2c66414

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 85a9a076127f1ae90e9d988ecf589ad6d6751765aa5e9bc04e2a98d45f564ffc
MD5 c1a10155cb6044d42ba244ee74c4a836
BLAKE2b-256 dc0d5fbee1e5222f51ee293b678a97f84161067e7941eed834980e8f24f98845

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0c99e4c722f9481ff9503d6e2c9e9ddc419f02a8d4e2bfb8a9151042279b2900
MD5 0c911c770464745ddb02af355cff0f88
BLAKE2b-256 cb1cc8884dc68141bb8bdebebbea2a6d98eeefdc26b71cc3b9b34bfb6b9cdc1b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 81faf680d7ede8c6392b3a6e10d3dec4326bcfd3d90e6673733aeb0f954f9c7b
MD5 d3d28556004f78368d96b63340da8781
BLAKE2b-256 c54a01a9d0ed0678ddaf2dc177aedf64fcad55a114ebe9c1894e79eb9eb3f9fc

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 fe96053324e01d362af5c0b72564730beb485e048a096bf23eb9907cd2a9039b
MD5 d07ad16547f661469d3459e3c34da68e
BLAKE2b-256 ae064afb4b65d2bfbfe72a0d5150f1a62270860e8b6f59c604cdb0c1fa0fab10

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-none-win32.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp39-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 1d06bc00e9a2664f3b911972270dcb8ffc5966134a24a10b3495cb301128f5c0
MD5 b427255fb819814a13594e4c62511b4c
BLAKE2b-256 d04c32be880edb3756be4dde4cfa25aef076a60fd01a9889f8fc4d7e9af408fa

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8dd4a13ad4cba94f6c7d6e3e80f353bd217fbfc17684de95be572522f7b29df
MD5 4982347da9b83ba4f3ec36f5604d1ba5
BLAKE2b-256 d30fbb40e11cc6634cbb8beb66000c667ff3f32cf8808531ab850e8375cd7862

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 519ae7ff01cf812a80e949c09f5e9ae81932db5e29f1f555e080aa0fcd70db51
MD5 20b1a5dc2b844933de362096a7668b8f
BLAKE2b-256 b3d9238dcfb8742e5ddda1229fb100b2beb5460c783612894c1a3dad4b9bc415

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a6ec350c9fa6814c1aca59b095b0b3f0db3961b40816339a225bca687af9daf4
MD5 916644fa4f809e0e1ea6f76b3af43815
BLAKE2b-256 4693bd3367aa27b70b55100a0d87f65e04b0fdef23c1a64434889968eb6527be

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 57f2f647b87337dd1c3082e978e26066f698e500963e8659616cf6e9f4182ca3
MD5 f2faa9311b7e892c6d2a718d92ecf0ff
BLAKE2b-256 4744429d3368d36035ef855d1ce929d035a6eb1fd7eb790904009ae4534595d3

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8f77e8faa45774645dc46ceff1d89170f63e5db1f2e76075978c85a26a4c2421
MD5 628b5e90562e7d18866a7869f0e6b6e5
BLAKE2b-256 3245b2f1d926b2adfc9004716e404a2a71ccde7af3ee9987982163f2b43a2fed

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7469f31ba4b9c35d0a815d10ff989e15f423286be1019a51a358a0688577a8f3
MD5 b2983fc7b6e9f37267d91c96d5e6320d
BLAKE2b-256 8acf5bad0c71eacd740ee37e84eceaf8e1ddbbd933da36de1ff7c206b343109c

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd224e655595538cff27f8748a6673dd8a42316dd530b99efbd4ab9fc510b652
MD5 3ea07fa25d3cdc4c847a0ad065005854
BLAKE2b-256 bd30e3bc0d6eb7373e9f15d581eab50eb0ad453ddb5825890a6e0e17b8813888

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4fbb8b8cc54b7cdb13a29a9ae919f435ad2939d3a9987458f00ef4228684c94e
MD5 91428eafad34542af117a19cdb80fb07
BLAKE2b-256 18107bd7b7a20c83a19b6e91e46e06598fd5bf0983276f6322ab3a66df469c2b

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 60910ac2d0b75e6c15f4d5ce7328332929fc016e23897cc601e841425b1de8ea
MD5 7d30ee03dff0a99fa23599939a7dcc11
BLAKE2b-256 8ecfce157dbb6af2870e5fb660e3cb2b799cf16bd8638e327a9b64dece1559fd

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp38-none-win32.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp38-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 9a446ed531bd2da11165d5abdd34e446283cb4ac3af81e0e4efc98d50147a352
MD5 267c71195144d8125be372fff533c85d
BLAKE2b-256 d1aca405ab2a7fbb13ad626cc6504ff0b1510ef88ea2edfb5e2008f1c369a8b3

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07aa2f4bfe97765746397b117663fb8400b13f2d56e1cc72b6643831fb03aa37
MD5 06dd9a0a1135d7199d97a7ebd32a8639
BLAKE2b-256 85d9728a3e788fdb4077e23be3473473ff776819a722361d3d6ca4583ba02bf7

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 72bf72fda82d2328a2138fcdf81a71b5bdeabb5f8701b73f6f3895119d4b3524
MD5 0b23c351cc6d55210903dddae63cb856
BLAKE2b-256 c770c0c02726262df0f9004b8bb7a1dfc211626d0e444ccd026819174201bb7e

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f2c0816426c3072dcc1c3709ddbe0019b0b6c22abc97f93125f151cc3cf532fd
MD5 e98f23202cfa7363700926e873127b69
BLAKE2b-256 71bc0b2bf9355e3c78db40648df52fdacfbdff3f48cc7c290d1a2cab06af9d56

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0453cbd5322e1ea3e5b6a9b7453bf8e4acc4937a37a37656c30741f0e9d98d05
MD5 b18b4fa25fca69389d041f62593d4b30
BLAKE2b-256 bb6f088134f2dde209894400eee38397000d34fd93d10578d49d76841e4f278a

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 81300eb3cae5a06f4780d76c6a68d13813b43b4bf153accfd6f20861dd721441
MD5 a902c7a8704c1e3c020d64635ddea61e
BLAKE2b-256 e4eaf890d15034068951d0f81ea3b3ad48408057b964c430702057ab612541cf

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e443669f7e8744ac839df525e8f8d0a20b3386040e8eb637131228a84eacbb38
MD5 b51b0002a7e6d941de4ab04e06a00abf
BLAKE2b-256 150e637e80228921b6d5b522febd37caddbfc082bef652ca40c89f626724131a

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 6216ea6c965deea9d1cf90c14a865effef42c99d566c2823c1be9d134ac3b377
MD5 4260464bdfb1bab1acbfd8dd1b2a209f
BLAKE2b-256 67d18ab4c909813b3a1f600b67eea1f8893318a8c3363f2c217d0aea04e3e586

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp37-none-win32.whl.

File metadata

  • Download URL: hpo3-1.3.1-cp37-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.6.0

File hashes

Hashes for hpo3-1.3.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 ed15ba22a7784f79bd6ffad6312cad83353f832ee49c9c7a3a789e99300c39ac
MD5 87c2e64325f502812c9f45fcee5594ce
BLAKE2b-256 42fcc75ee70022feb0b7173817ac05247f360bd0fb40ebe4ba8c869b8058d8c6

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38f2b1a87df09f35ca0c12e3a225f150856300c9cc279dc87796a781c9076248
MD5 bbfd04bde4fd2997bfab23a39fbc0354
BLAKE2b-256 ee4497a9b1ee735f2729b23eec31ca305719fced3cd7f8f82230cfc7970de690

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d34832847c2d3f4a10257c45883660a36647bf6afd07db7fbd38742fd6aa6ecf
MD5 2e649bf11600d781d5f6347371592ddd
BLAKE2b-256 359c0489b9175c63d8f232d79fff0838702d03ad79208dd78201c1715db283f5

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5ebb0fadd55a2323827e31c798954cf5b646cd99f8d3520cdf78a0a428031e7b
MD5 5083f021ab59254e2bd740477bbe5d67
BLAKE2b-256 d0c5795a9942ed8cf57ff2a8299c9388f2431ac789b7ce617ef61853101f9aa8

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 78dce37959b4ffedbf5bc8fc2f937722457697ae82aed2e1ca748ac2a760b006
MD5 8905c3cd5fc792236b1adf842119384d
BLAKE2b-256 2bf1ff0db0821974fa091e0940367f4aea6218b8a4956d4d0692303a49dac975

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9ee92ea325780290f2c7a3f00fd10195c5658300adea9efb20ed90f30bd80315
MD5 4d0d0504289da6f8398420e74de0a414
BLAKE2b-256 f824951c7a86780edc0254582a0938bc052145af7d26c10f8e10e4037697676f

See more details on using hashes here.

Provenance

File details

Details for the file hpo3-1.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for hpo3-1.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ae05f8308ffa3eafb360897f12513474c5a5fd78f6b0c16341d806804bcca6a
MD5 2ec58843b3aa3b926e5e7660f6dee678
BLAKE2b-256 db160cfa3e3d055e1a5ce3293c22f41fb5d25642fd31a212282c69f6ef560a12

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page