The NEWTEC HSTI package contains fundamental functions for the data analysis of hyperspectral thermal images (HSTI).
Project description
This package contains functions used in data processing of hyperspectral images captured using a scanning Fabry-P��rot interferometer (FPI). This includes transmission simulations of the FPI itself.
Key Features:
-
Image importing
-
Most common image analysis
-
Fabry-P��rot simulation
The Quick Start below can be executed given that the following points are at hand:
-
A hyperspectral long wavelength infrared image with the following tree structure:
- images/ - capture/ - RGB.pnm - step4.pnm - step13.pnm . . . - step1327.pnm - output.txt - properties.json
-
An example of an absorption spectrum (which may be acquired from an FTIR spectrometer)
#The quick start below uses a .csv file which contains a transmission measurement of ethylene gas. - Ethylene.csv
-
A sensor response function in the form of a pickle file
#The quick start below also uses a pickle file containing the sensor response of the camera. - sensor_response.pkl
Quick Start
-
Installation - Run
pip3 install HSTI
. -
Importing the HSTI package in a e.g. Jupyter notebook or .py file along with other relevant packages
import HSTI # packages required for running the code blocks below import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d import pickle
-
Importing a hyperspectral image from an experiment directory
# The path below should be changed to the specific path used on the local PC path = '/home/user/experiments/experiment_1' HS_image = HSTI.import_data_cube(path)
-
Performing a PCA of the hyperspectral image
PCA_object = HSTI.PCA(hsti.flatten(HS_image)) #Perform pca pca_img = PCA_object.scores.reshape(HS_image.shape) #reshape scores into same data structure as the original HS image
-
Visualising the principal components
#import string for labelling images import string fig,ax = plt.subplots(4,4,figsize=(14,16.0)) newtec_cm = HSTI.import_cm() plt.rc('xtick', labelsize=8) plt.rc('ytick', labelsize=8) plt.rc('axes', labelsize=10) plt.rc('lines', linewidth=2) plt.rc('legend', fontsize=8) plt.rc('figure', titlesize=10) plt.rc('axes', titlesize=10) axs = ax.flat for idx,ax in enumerate(axs): _std = np.std(pca_imgs[:,:,idx]) _mean = np.mean(pca_imgs[:,:,idx]) if idx < 16: im = ax.imshow(pca_imgs[:,:,idx],vmin = _mean-2*_std,vmax = _mean+2*_std, cmap=newtec_cm) ax.text(0.5, 0.92, 'PC' + str(idx+1), transform=ax.transAxes, size=12, weight='bold', horizontalalignment='center',color='white') ax.text(0.02, 0.92,'(' + string.ascii_uppercase[idx] + ')', transform=ax.transAxes, size=10, weight='bold',color='white') if idx == 0 or idx == 4 or idx == 8 or idx == 12: ax.set_ylabel('Y [y$_j$]') if idx > 11: ax.set_xlabel('X [x$_i$]') plt.tight_layout() plt.savefig('experiment_1' + '_PCA' + '.png', dpi=100, bbox_inches='tight')
-
Simulating the Fabry-P��rot transmission based on an absorption spectrum
X_min = 3.6 # ��m X_max = 14 # ��m lam = np.linspace(X_min,X_max,150) wvls = np.linspace(7.5,16,1000) sys_matrix, R_matrix = HSTI.fpi_gmm(lam*10**-6, wvls*10**-6, n_points = 9) with open('sensor_response.pkl', 'rb') as file: sensor_response = pickle.load(file) C2H4 = np.loadtxt("Ethylene.csv", delimiter=",") wvls_C2H4 = 1/(C2H4[:,0]*100) f = interp1d(wvls_C2H4*10**6, C2H4[:,1]) C2H4_sim = [] BB = [] for i in range(sys_matrix.shape[0]): BB.append(np.sum(sys_matrix[i,:]*sensor_response(1/(wvls*10**-6))*np.ones(len(wvls)))) C2H4_sim.append(np.sum(sys_matrix[i,:]*sensor_response(1/(wvls*10**-6))*f(wvls))) BB = np.array(BB) C2H4_sim = np.array(C2H4_sim) fig,(ax1,ax2) = plt.subplots(1,2,figsize=(12,4)) ax1.set_title("Simulation of raw spectra") ax1.plot(lam,C2H4_sim-C2H4_sim[0],label = "Ethylene") ax1.plot(lam,BB-BB[0],label = "Blackbody") ax1.set_ylabel("Intensity [a.u.]") ax1.set_xlabel("Mirror Separation [��m]") ax1.ticklabel_format(axis="y",style="sci",scilimits=(0,0)) ax1.legend() ax2.set_title("Simulated spectra with BB as a reference") ax2.set_ylabel("Intensity [a.u.]") ax2.set_xlabel("Mirror Separation [��m]") ax2.plot(lam,(BB-BB[0])-(C2H4_sim-C2H4_sim[0]),label = "Blackbody - Ethylene") ax2.plot(lam,(BB-BB[0])-(BB-BB[0]),label = "Blackbody - Blackbody") ax2.ticklabel_format(axis="y",style="sci",scilimits=(0,0)) ax2.legend() plt.tight_layout() plt.savefig("Simulated_Ethylene.png", dpi=600)
Contact
For bug reports or other questions please contact mani@newtec.dk or alj@newtec.dk.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file hsti-0.0.103.tar.gz
.
File metadata
- Download URL: hsti-0.0.103.tar.gz
- Upload date:
- Size: 91.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d79518615c19dc13e6f37568b5c512bbd67ad2296795d4d6b643278a98e1e6e |
|
MD5 | b7e4b4357eea894c8bf97247d9ff6bf3 |
|
BLAKE2b-256 | 5b9b0c35d10cc89267bb90951a9a87cf27dedb002cecd7e6f8a437a65c416906 |
File details
Details for the file HSTI-0.0.103-py3-none-any.whl
.
File metadata
- Download URL: HSTI-0.0.103-py3-none-any.whl
- Upload date:
- Size: 99.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14c5748922b84621e6a3cebc4230d464ec8e7335560dea1121858f3b66e12085 |
|
MD5 | 961f5b5d36bc1341fa278761cd734242 |
|
BLAKE2b-256 | 0426a938e649834f82f8ae115efb3b4da9b302951e3d14556226f3653f226eca |