Skip to main content

A LangChain integration for HuggingChat models

Project description

HUGPI: Unleash the Power of Large Language Models 🚀

PyPI version License: MIT Python Versions Downloads

HUGPI is a Python library that democratizes access to state-of-the-art language models. By leveraging Hugging Face's freely available large language models, HUGPI empowers developers to build sophisticated AI applications without the need for expensive API subscriptions or complex infrastructure.

🌟 Why HUGPI?

  • 🆓 Access cutting-edge AI models at no cost
  • 🔧 Unified API inspired by industry standards like OpenAI and Anthropic
  • 🛠 Extend model capabilities with custom tools and function calling
  • 🌊 Real-time interactions with streaming responses
  • 🧠 Effortless conversation management for context-aware applications

HUGPI is your gateway to creating next-generation AI solutions, from chatbots and content generators to advanced reasoning systems and beyond. Harness the full potential of large language models and bring your ideas to life!

📦 Installation

Install HUGPI using pip:

pip install hugpi

🚀 Quick Start

Here's a simple example to get you started with HUGPI:

from hugpi import HUGPIClient

# Initialize the client
email = 'your_huggingface_email@example.com'
password = 'your_huggingface_password'
api_key = f'{email}_{password}'

client = HUGPIClient(model='Qwen/Qwen2.5-72B-Instruct', api_key=api_key)

# Create a simple message
response = client.messages.create(
    messages=[{"role": "user", "content": "What is the capital of France?"}],
    max_tokens=100
)

print(response.content[0]['text'])

🤖 Available Models

HUGPI supports a wide range of powerful language models:

  • meta-llama/Meta-Llama-3.1-70B-Instruct
  • CohereForAI/c4ai-command-r-plus-08-2024
  • Qwen/Qwen2.5-72B-Instruct
  • nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
  • meta-llama/Llama-3.2-11B-Vision-Instruct
  • NousResearch/Hermes-3-Llama-3.1-8B
  • mistralai/Mistral-Nemo-Instruct-2407
  • microsoft/Phi-3.5-mini-instruct

🛠 Features and Examples

1. Basic Message Creation

Create a simple message and get a response:

response = client.messages.create(
    messages=[{"role": "user", "content": "Explain quantum computing in simple terms."}],
    max_tokens=150
)
print(response.content[0]['text'])

2. Conversation Management

Maintain context across multiple messages:

conversation = client.messages.create(
    messages=[{"role": "user", "content": "Let's talk about space exploration."}],
    conversation=True
)
print(conversation.content[0]['text'])

follow_up = client.messages.create(
    messages=[{"role": "user", "content": "What are the biggest challenges?"}],
    conversation=True
)
print(follow_up.content[0]['text'])

3. Streaming Responses

Get real-time responses for a more interactive experience:

for chunk in client.messages.create(
    messages=[{"role": "user", "content": "Write a short story about a time traveler."}],
    max_tokens=200,
    stream=True
):
    print(chunk.content[0]['text'], end='', flush=True)

4. Tool Calling

Extend the model's capabilities with custom functions:

def calculate_area(length: float, width: float):
    """Calculate the area of a rectangle."""
    return length * width

def get_current_time():
    """Get the current time."""
    from datetime import datetime
    return datetime.now().strftime("%H:%M:%S")

response = client.messages.create(
    max_tokens=1024,
    tools=[calculate_area, get_current_time],
    messages=[{"role": "user", "content": "What's the area of a 5x3 rectangle, and what time is it now?"}]
)

print(response.content[0])

5. Model Switching

Easily switch between different models:

client_llama = HUGPIClient('meta-llama/Llama-3.2-11B-Vision-Instruct', api_key=api_key)
client_qwen = HUGPIClient('Qwen/Qwen2.5-72B-Instruct', api_key=api_key)

response_llama = client_llama.messages.create(
    messages=[{"role": "user", "content": "Describe the process of photosynthesis."}]
)
print("Llama response:", response_llama.content[0]['text'])

response_qwen = client_qwen.messages.create(
    messages=[{"role": "user", "content": "Describe the process of photosynthesis."}]
)
print("Qwen response:", response_qwen.content[0]['text'])

6. Advanced Prompting

Use system messages to set the tone or context for the conversation:

response = client.messages.create(
    messages=[
        {"role": "system", "content": "You are a helpful assistant with expertise in environmental science."},
        {"role": "user", "content": "What are some effective ways to reduce carbon emissions?"}
    ],
    max_tokens=200
)
print(response.content[0]['text'])

7. Error Handling

Implement error handling to manage potential issues:

try:
    response = client.messages.create(
        messages=[{"role": "user", "content": "Translate this to French: Hello, world!"}],
        max_tokens=50
    )
    print(response.content[0]['text'])
except Exception as e:
    print(f"An error occurred: {str(e)}")

📊 Performance and Scalability

HUGPI is designed for high-performance scenarios:

  • Optimized API calls
  • Support for concurrent requests

🙏 Acknowledgements

HUGPI stands on the shoulders of giants:

  • Hugging Face for their commitment to open-source AI and providing access to state-of-the-art language models.
  • Transformers library, which forms the backbone of our model interactions.
  • hugchat package, whose groundwork in making Hugging Face models more accessible inspired and informed our development.

We extend our heartfelt gratitude to these projects and the entire open-source AI community for making advanced AI accessible to all.

🤝 Contributing

We welcome contributions! Please check out our Contribution Guidelines for more information on how to get started.

📜 License

HUGPI is released under the MIT License. See the LICENSE file for more details.

🌟 Star History

Star History Chart

📚 Documentation

For full documentation, visit our official documentation site.

💬 Community and Support

Join our Discord community for discussions, support, and to connect with other HUGPI users.


HUGPI - Empowering developers with cutting-edge language model capabilities. Start building amazing AI-powered applications today! 🚀🤖

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hugpi-0.1.5.tar.gz (26.7 kB view details)

Uploaded Source

Built Distribution

hugpi-0.1.5-py3-none-any.whl (34.8 kB view details)

Uploaded Python 3

File details

Details for the file hugpi-0.1.5.tar.gz.

File metadata

  • Download URL: hugpi-0.1.5.tar.gz
  • Upload date:
  • Size: 26.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for hugpi-0.1.5.tar.gz
Algorithm Hash digest
SHA256 9295b11e4c4af7757f9e584b3d23d24f87509ebde8f46fa9136bb8ffe2789c45
MD5 46514507724d5aed63f78e9300397216
BLAKE2b-256 43070963e2f5f9df0a1b268f0ca5f5d8bec43db2f67893da8c830f3ba484e5a0

See more details on using hashes here.

File details

Details for the file hugpi-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: hugpi-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 34.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for hugpi-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 982c7e3b43bde1a1b981c44dfa4493410ebdb1c935330c4f0c4dcef4ebe2d82f
MD5 066aad3ab83534a1240f0f230ee66056
BLAKE2b-256 c9af11693b9349ecf448e9d8fe512af820cc48741a83a99b5472faf9942114ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page