Library for Hurst estimation methods
Project description
Hurst Estimators
Hurst Estimators is a Python library for estimating the Hurst exponent of time series data using various methods. This library includes implementations of several popular Hurst exponent estimation methods, as well as utilities for generating synthetic data and analyzing results.
Installation
You can install the library using pip
:
pip install hurst-estimators
or clone from the github repo:
git clone https://github.com/edesaras/hurst-estimators.git
Importing the library
import hurst_estimators as he
Available Methods
Time Domain Estimators
- Central Estimator
- Detrended Fluctuation Estimator
- General Hurst Exponent Estimator
- Higuchi Estimator
- Rescaled Range Estimator
Frequency Domain Estimators
- Periodogram Estimator
Wavelet Estimators
- Average Wavelet Coefficient Estimator
- Variance Versus Level Wavelet Estimator
Simulators
- Fractional Gaussian Noise (Circulant Embedding Method)
Quick Example
Contributing
Citation
@software{hurst_estimators,
author = {Aras Edes},
title = {hurst-estimators: A Python library for Hurst exponent estimation},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/edesaras/hurst-estimators}},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file hurst_estimators-0.0.3.tar.gz
.
File metadata
- Download URL: hurst_estimators-0.0.3.tar.gz
- Upload date:
- Size: 7.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.11 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 595930ad7207ae54545267402354d5b2eb0cb62b65c5c01fdbc133413ab0ad54 |
|
MD5 | da8903fff2f4f7dd2d5a927f92fe8b58 |
|
BLAKE2b-256 | 3b2d484bd873c5478089536a3bae0b69c6facc1de2809ecbd1df71ca94a946f6 |
File details
Details for the file hurst_estimators-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: hurst_estimators-0.0.3-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.11 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 173f14104d33f9a69b7176362e2512ed6cf58bbab7e690e669f86e78b490eb68 |
|
MD5 | 96f7b8e6cc961f86761dd891304efc99 |
|
BLAKE2b-256 | 954ae7951911f5fd1b9bf405478a5fc7cd178f7e5e5b7f2a67d7bfe60d90ffb1 |