Hyperactive
A hyperparameter optimization toolbox for convenient and fast prototyping.
Overview |
Performance |
Installation |
Examples |
Hyperactive API
Overview:
- Optimize hyperparameters of machine- or deep-learning models
- Choose from a variety of different optimization techniques to improve your model
- Never lose progress of previous optimizations: Just pass one or more models as start points and continue optimizing
- Use transfer learning during the optimization process to build a more accurate model, while saving training and optimization time
- Utilize multiprocessing for machine learning or your gpu for deep learning models
Performance
The bar chart below shows, that the optimization process itself represents only a small fraction (<0.6%) of the computation time.
The 'No Opt'-bar shows the training time of a default Gradient-Boosting-Classifier normalized to 1. The other bars show the computation time relative to 'No Opt'. Each optimizer did 30 runs of 300 iterations, to get a good statistic.
Installation
pip install hyperactive
Examples
Basic sklearn example:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from hyperactive import SimulatedAnnealingOptimizer
iris_data = load_iris()
X = iris_data.data
y = iris_data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
# this defines the model and hyperparameter search space
search_config = {
"sklearn.ensemble.RandomForestClassifier": {
"n_estimators": range(10, 100, 10),
"max_depth": [3, 4, 5, 6],
"criterion": ["gini", "entropy"],
"min_samples_split": range(2, 21),
"min_samples_leaf": range(2, 21),
}
}
Optimizer = SimulatedAnnealingOptimizer(search_config, n_iter=100, n_jobs=4)
# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)
# predict from test data
prediction = Optimizer.predict(X_test)
# calculate accuracy score
score = Optimizer.score(X_test, y_test)
Example with a convolutional neural network in keras:
import numpy as np
from keras.datasets import mnist
from keras.utils import to_categorical
from hyperactive import RandomSearchOptimizer
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 28, 28, 1)
X_test = X_test.reshape(10000, 28, 28, 1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
# this defines the structure of the model and the search space in each layer
search_config = {
"keras.compile.0": {"loss": ["categorical_crossentropy"], "optimizer": ["adam"]},
"keras.fit.0": {"epochs": [20], "batch_size": [500], "verbose": [2]},
"keras.layers.Conv2D.1": {
"filters": [32, 64, 128],
"kernel_size": range(3, 4),
"activation": ["relu"],
"input_shape": [(28, 28, 1)],
},
"keras.layers.MaxPooling2D.2": {"pool_size": [(2, 2)]},
"keras.layers.Conv2D.3": {
"filters": [16, 32, 64],
"kernel_size": [3],
"activation": ["relu"],
},
"keras.layers.MaxPooling2D.4": {"pool_size": [(2, 2)]},
"keras.layers.Flatten.5": {},
"keras.layers.Dense.6": {"units": range(30, 200, 10), "activation": ["softmax"]},
"keras.layers.Dropout.7": {"rate": list(np.arange(0.4, 0.8, 0.1))},
"keras.layers.Dense.8": {"units": [10], "activation": ["softmax"]},
}
Optimizer = RandomSearchOptimizer(search_config, n_iter=20)
# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)
# predict from test data
prediction = Optimizer.predict(X_test)
# calculate accuracy score
score = Optimizer.score(X_test, y_test)
Hyperactive API
Classes:
HillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, eps=1, r=1e-6)
StochasticHillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False)
TabuOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, eps=1, tabu_memory=[3, 6, 9])
RandomSearchOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False)
RandomRestartHillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, n_restarts=10)
RandomAnnealingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, eps=100, t_rate=0.98)
SimulatedAnnealingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, eps=1, t_rate=0.98)
StochasticTunnelingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, eps=1, t_rate=0.98, n_neighbours=1, gamma=1)
ParallelTemperingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, eps=1, t_rate=0.98, n_neighbours=1, system_temps=[0.1, 0.2, 0.01], n_swaps=10)
ParticleSwarmOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, n_part=4, w=0.5, c_k=0.5, c_s=0.9)
EvolutionStrategyOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False, individuals=10, mutation_rate=0.7, crossover_rate=0.3)
BayesianOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, hyperband_init=False)
General positional argument:
Argument |
Type |
Description |
search_config |
dict |
hyperparameter search space to explore by the optimizer |
n_iter |
int |
number of iterations to perform |
General keyword arguments:
Argument |
Type |
Default |
Description |
metric |
str |
"accuracy" |
metric for model evaluation |
n_jobs |
int |
1 |
number of jobs to run in parallel (-1 for maximum) |
cv |
int |
5 |
cross-validation |
verbosity |
int |
1 |
Shows model and metric information |
random_state |
int |
None |
The seed for random number generator |
warm_start |
dict |
None |
Hyperparameter configuration to start from |
memory |
bool |
True |
Stores explored evaluations in a dictionary to save computing time |
hyperband_init |
int |
False |
Chooses better initial position by training on multiple random positions with smaller training dataset (split into int subsets) |
Specific keyword arguments (hill climbing):
Argument |
Type |
Default |
Description |
eps |
int |
1 |
epsilon |
Specific keyword arguments (stochastic hill climbing):
Argument |
Type |
Default |
Description |
eps |
int |
1 |
epsilon |
r |
float |
1e-6 |
acceptance factor |
Specific keyword arguments (tabu search):
Argument |
Type |
Default |
Description |
eps |
int |
1 |
epsilon |
tabu_memory |
list |
[3, 6, 9] |
length of short/mid/long-term memory |
Specific keyword arguments (random restart hill climbing):
Argument |
Type |
Default |
Description |
eps |
int |
1 |
epsilon |
n_restarts |
int |
10 |
number of restarts |
Specific keyword arguments (random annealing):
Argument |
Type |
Default |
Description |
eps |
int |
100 |
epsilon |
t_rate |
float |
0.98 |
cooling rate |
Specific keyword arguments (simulated annealing):
Argument |
Type |
Default |
Description |
eps |
int |
1 |
epsilon |
t_rate |
float |
0.98 |
cooling rate |
Specific keyword arguments (stochastic tunneling):
Argument |
Type |
Default |
Description |
eps |
int |
1 |
epsilon |
t_rate |
float |
0.98 |
cooling rate |
gamma |
float |
1 |
tunneling factor |
Specific keyword arguments (parallel tempering):
Argument |
Type |
Default |
Description |
eps |
int |
1 |
epsilon |
t_rate |
float |
0.98 |
cooling rate |
system_temps |
list |
[0.1, 0.2, 0.01] |
initial temperatures (number of elements defines number of systems) |
n_swaps |
int |
10 |
number of swaps |
Specific keyword arguments (particle swarm optimization):
Argument |
Type |
Default |
Description |
n_part |
int |
1 |
number of particles |
w |
float |
0.5 |
intertia factor |
c_k |
float |
0.8 |
cognitive factor |
c_s |
float |
0.9 |
social factor |
Specific keyword arguments (evolution strategy optimization):
Argument |
Type |
Default |
Description |
individuals |
int |
10 |
number of individuals |
mutation_rate |
float |
0.7 |
mutation rate |
crossover_rate |
float |
0.3 |
crossover rate |
General methods:
fit(self, X_train, y_train)
Argument |
Type |
Description |
X_train |
array-like |
training input features |
y_train |
array-like |
training target |
predict(self, X_test)
Argument |
Type |
Description |
X_test |
array-like |
testing input features |
score(self, X_test, y_test)
Argument |
Type |
Description |
X_test |
array-like |
testing input features |
y_test |
array-like |
true values |
export(self, filename)
Argument |
Type |
Description |
filename |
str |
file name and path for model export |