Development of an interactive brain connectivity data mining tool
Project description
PROJECT : Development of an interactive brain connectivity data mining tool
This project has been realized during a 4th year internship in order to develop a python software helping the brain connectivity research.
To install and execute this software, you can use PyPI or Github method. The Python version expected are 3.10/3.11/3.12. (Either way, verify that python is already being present in the PATH.)
INSTALL AND EXECUTION WITH PyPI :
- Run
pip install iacob
- Run
iacob-app
INSTALL AND EXECUTION WITH GitHub Download :
- Run
git clone https://scm.univ-tours.fr/projetspublics/lifat/iacob.git IACOB_APP && cd IACOB_APP
- Run
pip install -r requirements.txt
- Run
cd iacob
- Run (Windows)
python -m src.IACOB
- Run (Unix/MacOS)
python3 -m src.IACOB
Authors :
-
Developers :
- Thibaud SCRIBE (thibaud.scribe@etu.univ-tours.fr)
- Enzo CREUZET (enzo.creuzet@etu.univ-tours.fr)
-
Supervisors :
- Barthélémy SERRES (barthelemy.serres@univ-tours.fr)
- Frederic ANDERSSON (frederic.andersson@univ-tours.fr)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
iacob-1.0.7.tar.gz
(350.4 kB
view details)
Built Distribution
iacob-1.0.7-py3-none-any.whl
(367.5 kB
view details)
File details
Details for the file iacob-1.0.7.tar.gz
.
File metadata
- Download URL: iacob-1.0.7.tar.gz
- Upload date:
- Size: 350.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 721425972ad8ac67288832e9e9fad74a653e39edcc79527829f3876f7b6deaef |
|
MD5 | b1575b82a9399ed417b0e4bbe85890c9 |
|
BLAKE2b-256 | 07757994ca3d842a08d20f9de382c7405cece3780f2ef1eb07741391dc832494 |
File details
Details for the file iacob-1.0.7-py3-none-any.whl
.
File metadata
- Download URL: iacob-1.0.7-py3-none-any.whl
- Upload date:
- Size: 367.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4cd84148702ade55f1b1c419fdaa0637e90df554802906ec8e4a82f16e0af601 |
|
MD5 | 25c1b584015ca20577b858dc7e7e66ab |
|
BLAKE2b-256 | b4a6c43ac575087d4a4f05e55e654c9469623eeecc84bc0628f37861c89ea689 |