Development of an interactive brain connectivity data mining tool
Project description
PROJECT : Development of an interactive brain connectivity data mining tool
This project has been realized during a 4th year internship in order to develop a python software helping the brain connectivity research.
To install and execute this software, you can use PyPI or Github method. (Either way, verify that python is already being present in the PATH.)
INSTALL AND EXECUTION WITH PyPI :
- Run
pip install -i https://test.pypi.org/simple/ IACOB
- Run
pip install -r requirements.txt
- Run
iacob-app
INSTALL AND EXECUTION WITH GitHub Download :
- Run
git clone https://scm.univ-tours.fr/projetspublics/lifat/iacob.git IACOB_APP && cd IACOB_APP
- Run
pip install -r requirements.txt
- Run (Windows)
python -m src.IACOB
- Run (Unix/MacOS)
python3 -m src.IACOB
précison python doit être installé ?
Authors :
-
Developers :
- Thibaud SCRIBE (thibaud.scribe@etu.univ-tours.fr)
- Enzo CREUZET (enzo.creuzet@etu.univ-tours.fr)
-
Supervisors :
- Barthelemy SERRES (barthelemy.serres@univ-tours.fr)
- Frederic ANDERSSON (frederic.andersson@univ-tours.fr)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
iacob-1.0.1.tar.gz
(322.4 kB
view details)
Built Distribution
iacob-1.0.1-py3-none-any.whl
(337.1 kB
view details)
File details
Details for the file iacob-1.0.1.tar.gz
.
File metadata
- Download URL: iacob-1.0.1.tar.gz
- Upload date:
- Size: 322.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85ccf6a4d0eb8711ef6792b33239961c636dffaa9eb0178ca21d04f5fd429e08 |
|
MD5 | 2ed7ed1ade0c457442bdf56aba30a555 |
|
BLAKE2b-256 | 115c682402e6be1a59145b1cdf37e47c40aa9fd7c8c41115f3ee498f3e829cf7 |
File details
Details for the file iacob-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: iacob-1.0.1-py3-none-any.whl
- Upload date:
- Size: 337.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a7e3103334b8d7f96e29cd7eb7b8e4bcd57ccd93cbae5ac1f1e95af40b66286 |
|
MD5 | 5c2202e9e767460a2cda90192f02e71c |
|
BLAKE2b-256 | d3beda807a1b354da6a501cd6d4ccfc67d828bdc1f0101ee0f64467a0684a268 |