Skip to main content

A library for information flow analysis

Project description

Information Flow Analysis
=========================

IFA is a simple and fast library for information theory research and information flow analysis. It's a Python module written C++, Cython.


Installation
============
Dependencies:
* numpy

If you have Cython some cpp files will get regenerated during installation
.. code-block:: bash

pip install ifa

Or if you want the developmen version:
.. code-block:: bash

git clone https://github.com/janekolszak/ifa.git;
cd ifa;
sudo make install;

Usage
=====
Computing Jensen–Shannon divergence:
.. code-block:: python

from ifa.distribution import Distribution
from ifa.divergence import jsd

from numpy.testing import assert_allclose

p = Distribution(["A", "B"], [0.5, 0.5])
q = Distribution(["A", "C"], [0.5, 0.5])

assert_allclose(jsd(p, 0.5, q, 0.5), [0.5])

What's inside:
==============
* Distribution class with some basic operations
* Divergences:
* Jensen–Shannon divergence
* Kullback–Leibler divergence
* Functions to compute information flow between distributions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ifa-0.1.1.tar.gz (165.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page