A Python implementation of https://doi.org/10.1007/s41095-021-0232-x
Project description
This repository features an implementation of the algorithm proposed in "Low and non-uniform illumination color image enhancement using weighted guided image filtering" by Mu, Q., Wang, X., Wei, Y. et al. (2021)
Installation
pip install illumination_using_wgif
Usage
from PIL import Image
from illumination_using_wgif import illuminate
# load_image
image = Image.open("./<YOUR_IMAGE_HERE>")
rgb_image_data = np.reshape(image.getdata(), (image.size[1], image.size[0], 3))
greyscale_image_data = np.reshape(image.convert('L').getdata(), (image.size[1], image.size[0]))
# greyscale
illuminated_greyscale_data = illuminate(rgb_image_data)
# or: illuminated_greyscale_data = illuminate(greyscale_image_data)
illuminated_greyscale = Image.fromarray(illuminated_greyscale_data)
# linear color restoration
illuminated_linear_data = illuminate(rgb_image_data, 'linear')
illuminated_linear = Image.fromarray(illuminated_linear_data)
# hls color restoration
illuminated_hls_data = illuminate(rgb_image_data, 'hls')
illuminated_hls = Image.fromarray(illuminated_hls_data)
Github
For more info see https://github.com/muelphil/illumination_using_wgif
Notes
The color restoration is terribly slow as of now, could be optimized
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Close
Hashes for illumination_using_wgif-0.1.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfa44ae4eb59e3d86c179672d819b5f61e039ab87722eea720b48aac7215b25d |
|
MD5 | 8482d6767bf0bd5045dee15b2c612c8b |
|
BLAKE2b-256 | c6312205c19db706c93fc2b12fd4a3ec43603b55e96f54d2daf4c93bfcb12f79 |