Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines. Docs are here.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.7.2.tar.gz (30.7 kB view details)

Uploaded Source

Built Distributions

imops-0.7.2-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.7.2-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

imops-0.7.2-cp310-cp310-musllinux_1_1_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.7.2-cp310-cp310-musllinux_1_1_i686.whl (7.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.7.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (7.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.7.2-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.7.2-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

imops-0.7.2-cp39-cp39-musllinux_1_1_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.7.2-cp39-cp39-musllinux_1_1_i686.whl (6.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.7.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.7.2-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.7.2-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

imops-0.7.2-cp38-cp38-musllinux_1_1_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.7.2-cp38-cp38-musllinux_1_1_i686.whl (7.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.7.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.7.2-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.7.2-cp37-cp37m-win32.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86

imops-0.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.7.2-cp37-cp37m-musllinux_1_1_i686.whl (6.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.7.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.7.2-cp36-cp36m-win_amd64.whl (956.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.7.2-cp36-cp36m-win32.whl (772.6 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.7.2-cp36-cp36m-musllinux_1_1_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.7.2-cp36-cp36m-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.7.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.7.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (5.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.7.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.7.2.tar.gz.

File metadata

  • Download URL: imops-0.7.2.tar.gz
  • Upload date:
  • Size: 30.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2.tar.gz
Algorithm Hash digest
SHA256 61ffbb849d91a1a89779b4476b3020adfb4c55a03e914f938105b117ef354637
MD5 0d77d0592a308bb1904c0775a920ca53
BLAKE2b-256 bbd155de7c721de97730feeab57b772cfb0546590c28a433c560a7fcb0d91410

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 08c017d9808ded9b44ab81d751fa18a567b60edfb968f75eaeb51d4241ba3cce
MD5 44b033ef58f53818bb371d67dc4b3a75
BLAKE2b-256 2865ceb8e1488e7a12eb9639c3c14e1dd6c7b53417b54c36c3198fef5f41a524

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.7.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 12cbdcf22a315a85668e6fc3fd15f5c00c41d2d53e603da8dee094cc4b11173b
MD5 0f444b1b713b914edba3811788e9ed5f
BLAKE2b-256 773f4b5133594489bc1c865e9e70fada12a0a2b17fa2384e22fc3646edf11952

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 30d8f31dd0217d27986aabae26c0c6fdcada6a2b69904ad3b7aa29aefa4a54b1
MD5 ba44e256bd6c0b467b61b72fbd959600
BLAKE2b-256 57f244a1b77805edd8bad60c235532fc5839ce73cef04a99769b3ec310898790

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8aa53b04c00021c69a3c94048b091f80006cf99468d90f6f6089ba8186227c70
MD5 9da9099f6b54d08ba7fd03b1a6e5f253
BLAKE2b-256 3d17d4012102e2cfb347d65c4b23cc18955843bddb60f9119a97fd6bfc3b47cd

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1dedd6216f6bc520bcc68d66a4ccc755ae17ebda25a9d23225244460d0e94ec9
MD5 0fd9d33f3054b2574d2c0f9364d95a3d
BLAKE2b-256 5d2366540236df70d937c19ced8e1be7bc77410f75593b4e416f46ea9ce72a8a

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 86a9078732a9842da1e2b2930ce3441ecfb0614227354c3fcd11fe334b2c0a52
MD5 ef46e2c085ab058756560d9bebcd098b
BLAKE2b-256 54b1d44c4dc82e735e8b4bad724d4eb24180a374df149e4969599d58d24defd0

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dfc8393ef2a8e2cd4aa0b5fe098f449fd42bc41dfa3bca70e5e133b5756b8ec8
MD5 837778b12104f4b27b0832d03a315ac4
BLAKE2b-256 48c6332e409bb137c044bb4b61851d9bbb66553a77674aa52835bc5cc668f215

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 728de123ba2850565cfa44c2bc76b90cd6d081af0586c9548a2eaec3354827f3
MD5 e211a4331d2364b8bdb6f8e3a6067ab8
BLAKE2b-256 af09aee1dc0bbab26350908d6860b0d446860a9831db25a8d1009f485d7d0736

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.7.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3ca89ab1413a03babcba9b58402687245c4c28433c2a9a1750e937dc4d3b8a63
MD5 f55277ea5977e91f156881a0adf7dca3
BLAKE2b-256 4627618a56d28ab669f0c402b9dcb3f0ac8810f9ba275489d578f33f2eeda7ea

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3b26c6b6897951ed1f8bf824f6f8eeec979cdba79b3dcbb773a94042bda732f7
MD5 4a60dae94d2668370f75d0a7afae5d15
BLAKE2b-256 cf4c0c65a3f76f45948b7a6eca73e8894e9b0c8e364e0d0bcdc93a58a4121399

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 44a31d01c4b37b1fc6c27cd9099ef581b8aaea95d3ddc215aa3bcc185225d6d8
MD5 8133997c3a299c426294fa349a839a28
BLAKE2b-256 2a16a9976be57ec737d3427d22840002d31d1bcbe7e18911e1e28e7d4bc8d73b

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5733f414c7abb0557aafa0ea2d8a072f830930a0673dcbb27ac0433dcc4031bb
MD5 ad8502e741c2677d246348733218649f
BLAKE2b-256 77cae81f732b4d1cb25c47369d0a14910b929129710f1980dedc13398050fdc8

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d1268a019ffd2389c4c584ac5e7603eacf24d414a65da803050cac11188c56c1
MD5 0fc3e2d0f6605f97a4010ac97063bdd8
BLAKE2b-256 4121eaddba3063f47296624bbc7661e8c34fce0389cab36a72f6da08b85c9fb3

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d49bd23ccdfe06573793870ed7f8536220623c5e3e224a2e7d5b36c4774da0c5
MD5 cbd05540c70da534e32c09a4d8d64f09
BLAKE2b-256 985b1761a9f23c1749ee99b550ea654dd82ff830459f9e28d133712a596eba25

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 94de2a944e52403bd02afd5808f14ac0741cf72d72f709488d49f184e8a90a32
MD5 1d1feb985415a7854b954fb60ab6e9af
BLAKE2b-256 8d6bf9473f0664c6540743d0e7f8275caea723a87ff2038cc79d12fde48aff17

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.7.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2b973edb85f5923d251a3aa188645f42fe75804c4c0fb76d59871870eba4f87f
MD5 0b7d5a8b98e6126c13ef8936299dd967
BLAKE2b-256 9c2be5cdeb88c825367390beed09cde342b4055f2f87d9af2c58ad54bbd0f6e8

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88b5c3f7ebc5c450c41de9f978f78b4eb8ea7b610c2e8cdc7a68491e3ca68f36
MD5 9acb5390a4694dc79f3cc36f5e2c5278
BLAKE2b-256 0683c9c93771d7877c9c1b4f8f7c6ad778244d78a46c66ff6953d4b6a34bf1ed

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5cf388963a5bac8d5a35da0ccbe3c214646fc0e7f5a82cdd077d86c31989b28b
MD5 26f61818ba532a744aaadd7fdb368158
BLAKE2b-256 3d3c2cb6677e64ad4ffd0ed8fee4eb572dcada1d1f22d4ebb5ecd51a0d7b7db4

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77ab6481a55ffee9e13059847a3277d561984fe0703f79ee4d18f3354852bedb
MD5 232c2d9c4c47301cc8549ff14dbe5d31
BLAKE2b-256 a58e4ba6472764c624fa923061577262e9c430f3959fde54624813b799b86e69

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 690a556531d194bb92cedcec63ff71ae2a495f9927694073653d662f48a6e50b
MD5 0fe33f02d4888504e1f6d797a9cd9324
BLAKE2b-256 346c62080991c9609122b66246c311fe8c24174734523c32b86dfff9214cd627

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 246ad15180bcd58c2dc07a7bb225460cf0a992bf9cd9b7ed08e6c7011a295c43
MD5 8f6436634aa57de1ab4446ab89ec4527
BLAKE2b-256 5d66f4f8655ad2160a8d6a94c672f28d97a67f96e32142a0f49a9cfeadd032da

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 09cc08cbbd2ef371405c4d4810c407acfb6428a01a88492a64b2d5fa9384e1a7
MD5 693208c63ff4ad844d8d91fba2ca6fae
BLAKE2b-256 5de849444151103f40d9cdb09481bffd0b8a87571dbecc0b6f3a1cbda8bc4187

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.7.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9de97803aaffd787198c5138a8d90e21b7f8658749184cc054475c22ebc904d4
MD5 1a2a0cb60be0ef4ed6c3f06bb4c3dcc6
BLAKE2b-256 33865e6637fe3bc34ef49c464e4d95d7214a9d568358ed675fb3f5e2a183ff6d

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7adbba60713019a0f860ef129264371c8b10f366180ba1bb26db8474cbefa1d5
MD5 b369adff8ece8b64aa76c88978efee70
BLAKE2b-256 4eb390168bcf8055d2af3989f6a1f36132d756e411ed740440b7260355d49a81

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7f8279198fbd21cb529adc906cda258fec2c7ca4460f9ae00173c43c4fb57a67
MD5 8e023aaa07991cbc6a68ce23ef83645d
BLAKE2b-256 52a6cb443c064e3d235eb440bfdcabc6976c670c1e5014ad6bbb07f46b4b1034

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c483c15a9139a064222b2e1b6da021f2941b0a93d58f78ba8b1552a46d84408
MD5 813ef05f2d2c617bf55e491b655d9838
BLAKE2b-256 2513d6bb9089ae70ee7f24fe33700a217a0a412b690b0d089ecc7d54c5706ff7

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a45e392ddd7b8bf95ebace7a7dc3e29a43b75156dc3c9733e35451331e72547d
MD5 6bd5c9ebf52dd75270c261d7ad1d2a9f
BLAKE2b-256 8f1e919ecb0cbf089825eac5c4253730f0140a1884d64d58e4738b3231a1fdc0

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc875762d6bcead7ec712a368b1908891cded76d6a26b5da775e126be746e60d
MD5 6ea571ffa0cb2449ec9adf700c0252b3
BLAKE2b-256 4ec8c5a5c0d7e5c6888c6635a5f35b9e9816b2dc3e14527643bebd723955e123

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 956.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 689dbbe106b2a071f43879afc1f7143e25825870a1127dd36b93def49eeb5f65
MD5 7f6f4e26b6520154f6eff131798da266
BLAKE2b-256 6e8820b4df29c7dd0b50cfd52aa2319f40677d90c4dd0ff0625a2d7a5aa44378

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.7.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 772.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 44a1c2798e066047e3a83cafa307814d4fb0169f3ab00108b9fe94e4a1bc3042
MD5 f85705c52d23bbac51fd63c48b995444
BLAKE2b-256 3b2924417b3cfbb1d6d05de07c57d295f6fbb8355bd633def603930d91d529c4

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3ef1754b3241c3b51dd80f6c5fba5b27d96e42565531ebf5f7ab43c70b68f8fb
MD5 ac63e628434432a2102c7497ca771ef3
BLAKE2b-256 35cccf98a44de922314f4bcec8a545812772c25fcc66c739278d9fe0012e3649

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 93dbdd458f8c7ade9d33717f17009b0487637f4dac31939a11e5e24f24ae299b
MD5 cabe0bb81b00b678e3fa816096d8ed1b
BLAKE2b-256 5ff22dd6d26e51a74aac212db532c553387727036653fd5f3fb09eaf38525a45

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7626e6edc46e0161af3175937bf51a16174a395e8a7d6a46c216a3025bea1ea
MD5 b38752ee801307a06d316669c238ea89
BLAKE2b-256 6ada4e5882248c933166414a82caf1e07fc34f465b201290a8fbf7bb7edcb039

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eac41a7226ad9a825a9a5e49f1b591cc8ca683e495512d178733b46a4ce51bd0
MD5 010a0318fc2025741738d1c8919c4d1b
BLAKE2b-256 ef002b95abf7686cd2a758227a7637aaf7259b9746012ea66dfbad890a4883ed

See more details on using hashes here.

File details

Details for the file imops-0.7.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61da30b8dbe673f736124ff1767499142d638a2ee5adca3ed01bb980237e6e37
MD5 d3e04a668a8ee19cfb34ea0b34954cd0
BLAKE2b-256 43951c6a603b8480e5c3ff6cf7fa7e0e240db665c390d9abf1de730562f2cefb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page