Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines. Docs are here.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.7.4.tar.gz (31.7 kB view details)

Uploaded Source

Built Distributions

imops-0.7.4-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.7.4-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

imops-0.7.4-cp310-cp310-musllinux_1_1_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.7.4-cp310-cp310-musllinux_1_1_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.7.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.7.4-cp310-cp310-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.7.4-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.7.4-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

imops-0.7.4-cp39-cp39-musllinux_1_1_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.7.4-cp39-cp39-musllinux_1_1_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.7.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.7.4-cp39-cp39-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.7.4-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.7.4-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

imops-0.7.4-cp38-cp38-musllinux_1_1_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.7.4-cp38-cp38-musllinux_1_1_i686.whl (7.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.7.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (7.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.7.4-cp38-cp38-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.7.4-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.7.4-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

imops-0.7.4-cp37-cp37m-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.7.4-cp37-cp37m-musllinux_1_1_i686.whl (6.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.7.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (6.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.7.4-cp37-cp37m-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.7.4-cp36-cp36m-win_amd64.whl (977.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.7.4-cp36-cp36m-win32.whl (791.5 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.7.4-cp36-cp36m-musllinux_1_1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.7.4-cp36-cp36m-musllinux_1_1_i686.whl (5.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.7.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.7.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (5.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.7.4-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.7.4.tar.gz.

File metadata

  • Download URL: imops-0.7.4.tar.gz
  • Upload date:
  • Size: 31.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4.tar.gz
Algorithm Hash digest
SHA256 9e62108bb33d9d631706c9002c2e795b8a597a9bb973f893349c6b788f7b8084
MD5 ad592abbf72e491692ec1a8c02b2960f
BLAKE2b-256 07342a82fb21c23914631e4497a85995e671b18ae66eaf672b70dcae26c0a58b

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d432392f44885a5dee607fabf32aaf8beb07748641d0dc053ff51daed4cd6b5c
MD5 a47545eabf66c4921ad6fd1f4998b2a3
BLAKE2b-256 3df7c222b61e32823a181c15975bcbcc31c927640e7f96ca2d55657bdf0b4fb0

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.7.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 71899c82607d1bd7ff3a30e90914ab97d4acc4828a3f6b2fd61acb26ec706db9
MD5 15bbadb3237ffd5ee4e7026b8f6fa7fc
BLAKE2b-256 dc817e9efc894dc8027856c605856ac529daa88bfdbb71403f27cfc980d612be

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 41c48a9e26b0f4a9204e167d0c7f1d2c2d6b1bc25f9143fa3e208e31ae15ebad
MD5 09ff76d168290f30d1180be1399e250a
BLAKE2b-256 9b89322fd7d17cb07cf5f94e0d86be6359b9ab370502126dc1f789333ffb6dac

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a8e47367dc437b63909ff18d56282e8f4fed99a6d8cb81e8430936d8dfa96cd3
MD5 66ad59cd691c30c2b321edf992bfe0b6
BLAKE2b-256 d904406851de9e98da10aadfb74c4b895138863efa15be0ad5fcf66ed1755193

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f72214c5edb47808cc35ac96a526c33de33a4d634385b8024e10d815312292e5
MD5 9245d026f84c43779ee6dcae3af4ff87
BLAKE2b-256 6ae39e68c46663d53871c14f412fea05d769fc0af937f772e4459b6f1611621c

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 28ff283fa12ee91abbdae1f96a8f505870d6bd70e295f485c4f7f9091cecdf0b
MD5 e87729619eac0214fef813a58cb9a9d6
BLAKE2b-256 a1d1b75585cf69bff1e6c11bab3bdf81b2db9f23578d40d4cb753be2f77115cc

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec9b4753d099b3b9e8d7de3b11220500c6df6ee0e707eaf586fc2b161a02ef4b
MD5 1e5d9dede70e9030dd1c526f8f349c1f
BLAKE2b-256 a0c37a547671206706c003c0462ef75cf2d23e22fe92342f808114ab4e45ef95

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 18b31e79b8a330cda29940f7b1e0fdfefca41c83c0cf2ad8ab6c2075d803daf5
MD5 3c7fe67f76a542d8b2d09eff39d510ef
BLAKE2b-256 224d96c3fc0ad69ce1f5e9f04732eef2a9942c3ef858c3669f52fae6b42536ac

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.7.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2ffecd41a254f96e2f9f20bd8a778ce5b24d84bc23a93395c99b20dd23308a8a
MD5 fbe73642676d53fffede69b31b7b2224
BLAKE2b-256 cf1bc70f1fbf5fda0db944490e7f8a96c71bd439ad9c7c5097bd262e6f87919e

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 860aef067defa2a97a6148e5d122f711d614c28312eb082173dd63a79b9a0d32
MD5 fadf18988d620b119df4935a544531f5
BLAKE2b-256 ce708ec9bff95bcd88e18aebb89a64d0d0f99049cc5e8817ce65127523c1c761

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e4adacc20d2060e47bdae89bbac0c1eefdfd74120b1b0c9fd9e0ab1df18df836
MD5 bb1b31b5d5578eac6998803cc9a05a30
BLAKE2b-256 e0d7cefa7d6f0c98ba4da5f4e09766572b9b6953aa7c1fa014b9e197d9f7abaa

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e961cedfdcfe06681da02c3c7a570a892a718cd6477e5313cd875c082a15954
MD5 f62ffecd91b578f0aae340a949a5a9dd
BLAKE2b-256 e70839264e3cf4e5242bc65812c77859133b850f342fe06f1439f2dac5b0a19f

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5e0a62dd1ee662ab5462e346371f8087b092b31bb06102e9f71a152bac7b86b2
MD5 a5f7d78127568e429bffda68134fc329
BLAKE2b-256 b2b38c88d2773a114923638810fdbb13aa5c4923d1715dfff790887c8e36fde5

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b39b55b4f891b6a5a63fd8a9b753b0d8093983c5a58f5dc1fe3a64743181b6a
MD5 25a791f8a079c6b8e6152f1934ef31be
BLAKE2b-256 1fbeba54d7aa753f6c3e2d161c30e5e0f6b48ecd459dfb0e38fb2f83d3276291

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c2608591863b36fa23ad8cb20ced0a21676944fded1e2b79a2c39465b6ff131b
MD5 73d471429a2d6e19660f730f8d77873c
BLAKE2b-256 5a3b6bc42de19c6c1005435a3df1969b5ebf5fdfea17f3108ae157dba8fd9043

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.7.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 340558438c1eeb980ad1f30d2997c97c269215da2d4193bb420173f58ee3ce48
MD5 d30fb019792a286607ddb128ae3e6617
BLAKE2b-256 fee017ac5dc85fdadfb5ba055e309b48adecc95e78d2dd6089b8ca43465b08e8

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 60d26ab352fe30e1004d4234dccf3da628a1291ee2a8e2aa35d433d3d4c52d52
MD5 96b2b50ad65a7cdcdad4548afc865c9b
BLAKE2b-256 db025b7458d52900d7dae1e11df12a876084725e215bd7c7d09f81736750ada7

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0731e2e19884800e1074e277ed0863f11932c2dac25f11e4e67e6f31c81fea84
MD5 264ed3525c78aa083247addf19773d95
BLAKE2b-256 4849cb79ae176200f634a1b2d5a28decf3bb4282c8dc7b5755699c7c31cd7db6

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 095d9522fd2dbaff9c74e269fc13fe24943842842abd70cdde94092c68cf868f
MD5 273bb1463c1c8ed08f42eede2edae90b
BLAKE2b-256 69482b118f461559fa6e5de1067fd4c55b89a4972855ffea7815b7e1cbac2782

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1c6f28ae93d4cac250cb8d14a4da1f0c9b6b6b80d97c99c22c19c4abd3f081f1
MD5 7ffe282a3e25e0d275a40e2e872c2517
BLAKE2b-256 fa64aaa31bc9c7300f2e2abb1685ee1f40c7fc72248e7175fc7f166619933c7a

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 345691a788f695a922c140144f3d0d581fd7322067752198e789049b97d3cffb
MD5 05324c87c7d5a86345b6da51ab346354
BLAKE2b-256 61d58829f602d42e6ad81b7edb6200e5441552a249b823b62f9cf0c68bc2475b

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 876135fc07e195a017d09f521db4d27442608403425bcef19d2499131e04b163
MD5 bc85ee9ce34e785bb372807b328a150f
BLAKE2b-256 f85d971123c92510f53ccd46447b79da036b847367e6d670359b0c3bbe3f9fde

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.7.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 68102bde8fccea900edc287a44d51c205a1183cfdec8b864c12f042a3f48e67f
MD5 70b2c985f3436b7f9dd42ac206487846
BLAKE2b-256 a46adaf405824a4662b3989c82fd6d3210af3ee6633ea2ccd9e985bbb21dc27b

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e25dffcaa5cfa78b510b4945e5f128cfd8a25e063a26b6a7585d78d4a103c943
MD5 e1b750dded80d5b3e41bca0da316a68f
BLAKE2b-256 24fe4bf3904d58caf3a7ed21be11064fc1a88f7c9fe9977cd27a159fb96ec5c1

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c7c2fbef8abd6442ef74d11fc27f786fb6965d456839cbe3e27691af1ef721f4
MD5 fab2599a4a6adeb5e7d5a89445815eaf
BLAKE2b-256 1ccc52c6670be1b885fe872847c29da7636367238b9a90b7b503c7e9dd7881a0

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd168c5d99c3f44fb60813345d1c766c386cf6c5150993ad3202928526d36f26
MD5 11652625a0169c3bfee88bb5e87da048
BLAKE2b-256 d5f9e5fe7b159c8dfc7cdafbac53fe4c799db40e56c836a043ebeaaed642af35

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8c5d4b359eeabd17a725ff617d60c0a9ff5707fe83372d4006407ccab8bd3151
MD5 8395bcfd8ef6528f5e10091b0070fb92
BLAKE2b-256 5d738019829d34af2d5c7b30d92b257c1bd29c9d99a8c9b7ca1968b7ea71d67f

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a27f2eee8f939f1593560eff7c6e3745797a45241c5f4cf3008da49c833eb0a9
MD5 cb282da3512131c36900be1b94050aab
BLAKE2b-256 24e68a0900134a50c94b77ec055aef27b7daa6148b626f393a9214963eae3873

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 977.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c9e89d487207dbdb9847eca3f4be01a0d72cf05d8c5fb601b480d8d5938b3402
MD5 9c1dead0f27d7c3421c7d8ab2e24b58d
BLAKE2b-256 1a1c749531eaa2c3897ef42c69529fbd4eecefcc30a1e66de08a2697743b45e4

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.7.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 791.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 7b678fe4a5cc1e5c625e91fa7ee47d945d3d00dc107e12905f44aef7915df724
MD5 c90aa256ef376ba0ad51e4df996585a9
BLAKE2b-256 3f78fe124063d2af4e793541eb108adfd250e8dd361f3e4742661fcc2485f05b

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eb69c5a8bed0e46fbc729c439ee0539db04df0fcfdd101da51f90db28536a296
MD5 31219c7f0e7e01c1346cc6ad9e13419a
BLAKE2b-256 024baa17f73779bb2aa7ed8b09e846cac395902d1de331e4253667941152ac14

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 42e3cef3f2e24a109fd3cb666fc1612afeb27f4196bbe0b7859b127d8709d4b2
MD5 141c9106a281c74b934bd636c57eba79
BLAKE2b-256 ad2afa65b310d4f5c630a305a4269643766d38abc41f8ab0b0dec4e596ccac4d

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40a5b35a08b99edf5399829cb796ca5be3ac4bb7ba81e861617d625e69377cd6
MD5 616be0271700678dcf7ed08218995d34
BLAKE2b-256 c5011a2d6b7bd00d6e37d8e84deec954191127dbf9ec94a8de2a8f89f36b6369

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 46657a6c293791ef270d84b99a9ab84d690906b03027aa98fd234908ef52c325
MD5 7858bb61c14a59739126489f54b6b900
BLAKE2b-256 37f33dfe205fdbfb649e37c82657b229b65beebdaa02625b4cd66570fb9b6951

See more details on using hashes here.

File details

Details for the file imops-0.7.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 095c6dcebce117b2aeb25d6c11b95f72e04841ac97fc7e8a5668c278b349a4af
MD5 0d6165c9bbbefd3230557260f081acca
BLAKE2b-256 269ea100355edfbc41c859f076ee2145369795930be8fe154175134a60b11353

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page