Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

How fast is it?

Time comparisons (ms) for Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz using 8 threads. All inputs are C-contiguous NumPy arrays. For morphology functions bool dtype is used and float64 for all others.

function / backend Scipy() Cython(fast=False) Cython(fast=True) Numba()
zoom(..., order=0) 2072 1114 867 3590
zoom(..., order=1) 6527 596 575 3757
interp1d 780 149 146 420
radon 59711 5982 4837 -
inverse_radon 52928 8254 6535 -
binary_dilation 2207 310 298 -
binary_erosion 2296 326 304 -
binary_closing 4158 544 469 -
binary_opening 4410 567 522 -
center_of_mass 2237 64 64 -

We use airspeed velocity to benchmark our code. For detailed results visit benchmark page.

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast 0/1-order zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=4, dtype=float32 or float64 (and bool-int16-32-64 if order == 0), output=None, order=0 or 1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For all heavy image routines except label you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

function / backend Scipy Cython Numba
zoom
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening
center_of_mass

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.8.2.tar.gz (42.6 kB view details)

Uploaded Source

Built Distributions

imops-0.8.2-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

imops-0.8.2-cp311-cp311-win32.whl (2.7 MB view details)

Uploaded CPython 3.11 Windows x86

imops-0.8.2-cp311-cp311-musllinux_1_1_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

imops-0.8.2-cp311-cp311-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

imops-0.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

imops-0.8.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (9.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

imops-0.8.2-cp311-cp311-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

imops-0.8.2-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.8.2-cp310-cp310-win32.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86

imops-0.8.2-cp310-cp310-musllinux_1_1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.8.2-cp310-cp310-musllinux_1_1_i686.whl (9.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.8.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (9.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.8.2-cp310-cp310-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.8.2-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.8.2-cp39-cp39-win32.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86

imops-0.8.2-cp39-cp39-musllinux_1_1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.8.2-cp39-cp39-musllinux_1_1_i686.whl (9.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.8.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (9.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.8.2-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.8.2-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.8.2-cp38-cp38-win32.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86

imops-0.8.2-cp38-cp38-musllinux_1_1_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.8.2-cp38-cp38-musllinux_1_1_i686.whl (9.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.8.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (9.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.8.2-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.8.2-cp37-cp37m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.8.2-cp37-cp37m-win32.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86

imops-0.8.2-cp37-cp37m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.8.2-cp37-cp37m-musllinux_1_1_i686.whl (8.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.8.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.8.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (8.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.8.2-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.8.2-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.8.2-cp36-cp36m-win32.whl (981.0 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.8.2-cp36-cp36m-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.8.2-cp36-cp36m-musllinux_1_1_i686.whl (6.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.8.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.8.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (6.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.8.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.8.2.tar.gz.

File metadata

  • Download URL: imops-0.8.2.tar.gz
  • Upload date:
  • Size: 42.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2.tar.gz
Algorithm Hash digest
SHA256 055ad1d1d4a880b3e8c26c81a8488134239089cbda2c959bf8e3574a65d09906
MD5 004fefac0a21215c11ccb822ff27f647
BLAKE2b-256 ed35f0a5e5dfc93e971851c812cb548e3d16f939a0e5a54ee52b079512de2003

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 58d8ebbdfa5080c78591592cafa46eb5202b9d0fdf09a82d81a2e49675ba3d35
MD5 73ab8a7bf063d60a1562a99fe9ae1e3a
BLAKE2b-256 98c7e05c30bb80e68ea9d333f6ad40e268e99c6232cc5868f5d801b4d6df2fca

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: imops-0.8.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bd990b39d39d298effccb733628ee116ca55b1d5cd32d52c0c0b3043e1881f12
MD5 d4efefc2de14cacaa7b507b28a0af395
BLAKE2b-256 2c9685ca6e2b3fc78aa613c89454fe37e39b680242e644ff3969e9a2846faec5

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0b7135335a53b10efde8ffbe9f2dac48e46c361e303485561deb332a51b3c0b1
MD5 a893682d1f45978b2f408e71261a5977
BLAKE2b-256 fe736c81bf11e8050c1515bc9e5da8878ea89c277c3f56b4d66f63f4bc1ccf95

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ee2cb50af49a5fed7dc880fa734ae2bba7533f0a929d8bbb7a108a5514b8fc99
MD5 b38d2a0f765442fe7982e0c792fc9219
BLAKE2b-256 0c5a2a2569ef610917618c0ae3fe04c7fd6fe4436353e9978646141f3ac48643

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39bc57b97a9c964a98ca77ded6cad62163b6221c50e50d53a6ec505a9630c205
MD5 084e7094a2ef407e4da874db9d5a10e9
BLAKE2b-256 a753a5c60811b60c3a1a24e4799d63877fd54ab6d5f01ed8418f0559e87a1260

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8023b50b32b75f30f709c520e00814dd1779611d73a9dd1d17d395ae1d2237cb
MD5 d186ed9c7352efd6cfdd0a03e890c061
BLAKE2b-256 f8d29aaf07331db84fa050a131b3782476d1f0c20e0683ffbdc45cb99863567b

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0670ccf9433b17bac2cc750d0d4d8b5b32318e6af747b9690526c59fd6c4f3fa
MD5 2532eb0ca2d8d5a752be4fab82e288ad
BLAKE2b-256 32171f39a6fd20a59647879928926172c14b9fbb06af0e32d8479c6eb8bcf3cc

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d2fc45d094c5244e9fac03d3b5fe4918047325be62220e845005fbffb1641598
MD5 a50afd26854ddae069d7b151edfb4c33
BLAKE2b-256 1fc7144829d23a5f625a06eae0c36a74cbbd44495e96ea54420d6c1b53c85c64

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.8.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7cfcfa07b0746644c48e4e44f6b1322ef934e99e3727e2a52050521791d4679b
MD5 d4335b3c4d97f6b831c589ddad995c10
BLAKE2b-256 63cfcb29d698620d6eea966a51d438cedea534109b0d6c2d3782e6b0fac19df8

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2751e77387929386afc96140ec30765cd4b32671bfa6395bd460ad45e85a456c
MD5 cd90e7cc79aeda4fdf82c9c67d0ba38a
BLAKE2b-256 7c609c4dd84eceb809932960ea09d787ccef39095f63cc1b492bda1ae6a359db

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b89d762fea52d954b270c2d2c69ce4ecf555cc8fd7c50529557c7c92f7c33c6a
MD5 c477d1aaf81857c1719b22f1c0ab81fc
BLAKE2b-256 268779b9494f57142b11477b0279269e125e8b5b204bb21561d1e1f88a4b24d7

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41e88e694d64ef6f0a4f114eee3ceda21f461448d513f260c9058de922b6c4c9
MD5 076777a516cfae7901d6f2dfe4af7263
BLAKE2b-256 265eeb78d72f959bb6e7f2b899a1eb6826ba7c9dc8dcdbbe57c6dbbbaec1f200

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b6eb2428e8f3b6f6e287266981cd81bab0c731cfeb0fbb981182ccdac535ebf7
MD5 8db83941837be6ade3aa4551bbbe0292
BLAKE2b-256 36266f1160aea0ae2a059f8596c1e2b9481d0c028e5d5267d65a1d3115380360

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe5344ea7acb79fe569cd4357085ee4d6bf0e2e26fd00c3c1f748519d11a2491
MD5 e4866819402c95e185cd7c950d190e07
BLAKE2b-256 94b44616d5ce67c8f74fafa6e09ee4661cdf9bd64a606a90f2d7a871f2ad02ac

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4798e2d3bc60297b46c8d461ba6f2c77580af63e4c1702b050efb62dbd717722
MD5 1b78d988ca5b9f65a82d94d08b5c5a09
BLAKE2b-256 dfb14795628f48f3adb9725d73434e5a0be53d1d5ee70b75a41997283d5b64a6

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.8.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 440344ad3eca2c1d904483b5ab01f056521150b497100f7bf78ea530b81efc2a
MD5 62f7a12bdcec9e75d846021d8e193dde
BLAKE2b-256 30b9b0cac2ca67202cb76d72b873605fd0a0190aeb65110c6b142d644ad79f96

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 748f1c35d7e8b2ebba22a0701c658b055520e2ae96177046d79c36992e37b17b
MD5 86ab5f87983fb091b67c8e031a19d0c9
BLAKE2b-256 d2eba21f193d49e71c5ad91514b2a71e3f0cfd9b1615e1665e7bf039715e6808

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 446af4ad29b9fb2ebcf2df8d7d97129783f86957023ca24c1e3ee2edd3765d2f
MD5 ee12ab856c019efbbba5ae90c56513c9
BLAKE2b-256 96058f16449a5b3cebf40943da80f1c3b7f025dd483432cf2c95eb4aa4fefbc9

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 666cc00c003814f453cdf8a77af16a6d7f9501f685e2843157910c0caf17cfcd
MD5 53780410753581369b196a59d4f9fb46
BLAKE2b-256 ed169d5daf04cf0a2935be8c96756a3bcd009ad2057a311beda85d6dde3b951b

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e55dcea19560f2fc1ced1c4ceffd0fa63aefd12e3b14b646c31aadd6f8a11b38
MD5 8b7fcb55ea683611e4f0ad3284e9b791
BLAKE2b-256 40f4a099da4aa1e34756ac3e4e26f4edd3b471db59f663f5200a5d7bae19549d

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66b94c7249dc8882700761b8dbca23e21622eca230de934d6fd61b634c93584f
MD5 b71a9fe1fd14be196f0e8e7e8a29aa70
BLAKE2b-256 6d078a191b194333744dd81b3130e251af2ad95284be88e3d10cb569909c56f1

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 29c1a7db0e8d21673e2cb38ecc2f5c49673e35a35521064af01f74648159c34d
MD5 46394f802d9e40cd5e45b4496bf8d754
BLAKE2b-256 d0aeebf65de1c06eca3abd3fad46499bf937987bbb6c167ba06120c74ffae3a9

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.8.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 23278fcf7d9cba4711944a36c4e123302382b29a89b3315b5c5d7ab16eb46865
MD5 4829852fd5688c61da56586803ff98f8
BLAKE2b-256 31709c5a9411f1c198643a0001830066675411107260979667e36bae2402d393

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 05ff40a1b54ee56b666a4eb6af1e89f97935b1c07b7a42c3d290e1ce9679c8ba
MD5 954189a462824fa4d228999a361743cf
BLAKE2b-256 87d5723e61e5d05825416ca62bd7a87854b2840db606d92d193c87d6db5cbfd4

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7dae44d0651a7ed469bd61c59b48267a48086fa30cdc48c727ba67ab56631b65
MD5 2255b6f3996034ad9f45fb34e8585ce3
BLAKE2b-256 4b3905ea18b48f5647824ad02a1a8c0a1f6db88393ceabaa87122e40e344fc32

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba46cd28863a2068e0b93b0368f4ecccb86b4644ac7b3c337159c3caef3d9626
MD5 cdb0f35da67c1df4d39d53d9ff6ceec8
BLAKE2b-256 e66cbc2e6c8ae99e5bd54c3d0d982ee106075e01850703c390659b27f80a3337

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c908daa21deb061190008a54d8f04cf5ab292cc827b1273e09fa10da470c06fc
MD5 9ab31d391b18565767970c5810429f86
BLAKE2b-256 40efb5d4dbe5652a305f64c0411ce70839c9de881e60bc77ed7bacc146b2e60a

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 271ac1c4bf4b7d340b296dfaef8da29015932487679b83e97a130b8344a1bcb6
MD5 45365f43db91848e733b02fa353451e2
BLAKE2b-256 336d1229ead7665c02d9e9437f02eb3cdfe023df9c2c2bcb71be7afe1ac2ed96

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c208c067c22a7a864fc6a596648452d1b54b23c793abc6b0d439fe9c1934dd26
MD5 421ff0ac8d865ce8f0c73ccb05a11791
BLAKE2b-256 10453c046304a54d7a035e7dcc4ad063bc2a7cfa7bee2de360d64c3934a56af7

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.8.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0cc6de9258ce76efcea2d452c36cf02b462baa762450d464503577be29780aa8
MD5 306e97d69b4331d71d20a5e2befa1ef8
BLAKE2b-256 1520a56c3f8babc0d329f8e0e0f768409821fc711852711338f33937f162de86

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e226f081cb6b9eb25ceae7d98a91b26b15c90081fce72f6730b5e0b4a01cf278
MD5 07554fbac5b3e3ba04359a290aa1e290
BLAKE2b-256 86cb4bde4004e59c6f8c6ed44c46eb617fc25fabd68b26a3ac924eaad74f0182

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 838ed8f8e51b177d1f47b0fe07baae763584b689e5acc583704939fe55aee765
MD5 48af4b8713231d1535f616477c4da6ea
BLAKE2b-256 422bda8d4a638fb1b2e72eef2930799cb62ddca383b11e0b589466629b110bf7

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f70490ac9c760ef4ab94a638eb5c7890a9329945317de6ee4a270d429530ec2e
MD5 1d27f66ff7d56d42a51f5b4ce92cfc6e
BLAKE2b-256 856883acd2304be368468f05ca88e8c52aff9ede5e6a26a06114ae394d1c86e1

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 992d7890f12186f927378f570a5cd01ac1ce749c42dc5480ac4baea1c4e6d1a4
MD5 2f8018823450ab465ffdf664c4dc5175
BLAKE2b-256 cb7f561aa3b64fc42d80255983a80b481e1446cbad8f7b25fa2744c5b99f89cf

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3f01ac0c964178d55f15a063aa6cc0ca61b2889b28e722fb2ee0e7a31bf515a
MD5 d7dc35405065df784d9e57331fa506e0
BLAKE2b-256 e4c425aac695ab6e9e92184a9cc5dc736af509d6048ae488cf1a41880fa5381b

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 efeb2523bcb3dfc85b248962f8eccbbfde69c30de6a22c29b3477ff84565a774
MD5 618b0970a6c7dfbea90d4be7a36f9d82
BLAKE2b-256 ab09ecd379699b5891191b0a5880fe28fa9a5e4becf72ec5edb1f4617a8b2366

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.8.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 981.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ff804afd74f3f9d078a24f9afa580550269d75cb6142ab5029d4398813595b9c
MD5 9526217912a07b3f635d5d06bff8d26c
BLAKE2b-256 4f4c23c353013abb8d3f58e89064bd988419a10d568fafed5748e2bb7655a02b

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 07c325160b06e4c4fea353115fbc6dc55a83b9bb2812ceb6ecb46c99d3f6a65e
MD5 50f048cec81d8ef01b54bc14faf4a1ee
BLAKE2b-256 ba30861c5d676a82217994742e9a7ae21067129412ead47e3c902ffc23601a5d

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d05b47d42d251238eeaf63fd3fc9f4dd4a3eee1310085046101177273b005e6e
MD5 12c926004e76782b35ca89cb5b8b3844
BLAKE2b-256 c865edd4890f4d600ca6793a7ee51864e8ab350047be9d0f118d55eb855b9ff9

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53cc2f10e1ddba0f0807f1df05c9314b33d5e51af2f7e2a01c6213c52bfe7621
MD5 5d7ac129e63b01e742a447f13bc0684e
BLAKE2b-256 37b60509b284bc5f613ca32fc22fc212a3d57d05d44a9509b427ec3d22b416c4

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2be1fe33c76b268b0afab5b0d08bca3433dda4d5f02fdd6ca259ccbff3b13964
MD5 f7a911bfb2540d0c2f56bb8f6624bb58
BLAKE2b-256 50e26c8a9f2c126c13b8a33363e4e71fd8ba4f774b917eeb460a11b4c5db5f4c

See more details on using hashes here.

File details

Details for the file imops-0.8.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 315e1af379e7909594fad1349cc744ba64541845de81051aa44d9f4fdc5fbfce
MD5 7713924cad2d49d9c0d992c507fb9f5f
BLAKE2b-256 d0a438d36366b30d328a31e21262c0efd60906e5ecbf08d2ade9cc9ab4981c49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page