Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

How fast is it?

Time comparisons (ms) for Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz using 8 threads. All inputs are C-contiguous NumPy arrays. For morphology functions bool dtype is used and float64 for all others.

function / backend Scipy() Cython(fast=False) Cython(fast=True) Numba()
zoom(..., order=0) 2072 1114 867 3590
zoom(..., order=1) 6527 596 575 3757
interp1d 780 149 146 420
radon 59711 5982 4837 -
inverse_radon 52928 8254 6535 -
binary_dilation 2207 310 298 -
binary_erosion 2296 326 304 -
binary_closing 4158 544 469 -
binary_opening 4410 567 522 -
center_of_mass 2237 64 64 -

We use airspeed velocity to benchmark our code. For detailed results visit benchmark page.

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast 0/1-order zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=4, dtype=float32 or float64 (and bool-int16-32-64 if order == 0), output=None, order=0 or 1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For all heavy image routines except label you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

function / backend Scipy Cython Numba
zoom
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening
center_of_mass

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.8.3.tar.gz (46.3 kB view details)

Uploaded Source

Built Distributions

imops-0.8.3-cp311-cp311-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

imops-0.8.3-cp311-cp311-win32.whl (2.8 MB view details)

Uploaded CPython 3.11 Windows x86

imops-0.8.3-cp311-cp311-musllinux_1_1_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

imops-0.8.3-cp311-cp311-musllinux_1_1_i686.whl (10.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

imops-0.8.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

imops-0.8.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (10.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

imops-0.8.3-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

imops-0.8.3-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.8.3-cp310-cp310-win32.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86

imops-0.8.3-cp310-cp310-musllinux_1_1_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.8.3-cp310-cp310-musllinux_1_1_i686.whl (9.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.8.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.8.3-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.8.3-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.8.3-cp39-cp39-win32.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86

imops-0.8.3-cp39-cp39-musllinux_1_1_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.8.3-cp39-cp39-musllinux_1_1_i686.whl (9.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.8.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (9.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.8.3-cp39-cp39-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.8.3-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.8.3-cp38-cp38-win32.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86

imops-0.8.3-cp38-cp38-musllinux_1_1_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.8.3-cp38-cp38-musllinux_1_1_i686.whl (10.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.8.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.8.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (9.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.8.3-cp38-cp38-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.8.3-cp37-cp37m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.8.3-cp37-cp37m-win32.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86

imops-0.8.3-cp37-cp37m-musllinux_1_1_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.8.3-cp37-cp37m-musllinux_1_1_i686.whl (9.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.8.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.8.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (9.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.8.3-cp37-cp37m-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.8.3-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.8.3-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

imops-0.8.3-cp36-cp36m-musllinux_1_1_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.8.3-cp36-cp36m-musllinux_1_1_i686.whl (7.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.8.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.8.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.8.3-cp36-cp36m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.8.3.tar.gz.

File metadata

  • Download URL: imops-0.8.3.tar.gz
  • Upload date:
  • Size: 46.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3.tar.gz
Algorithm Hash digest
SHA256 e998102e014171d9fad914cc0c36f606f07ac4a51f78e2f6ad3aaf77353635e1
MD5 094117874c279bd05e3eb08d0b35e83f
BLAKE2b-256 7daedec06608564bca336b4bbf1dc636bb6802454b311fe876ce6a2f687692f4

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e7b2b3d2992ff5147c4c2051a5682740a3099eaf799124cce20b2cff99607f9c
MD5 1f8c117ec54d26521986292b834bef61
BLAKE2b-256 978e46937aad38eca3bfffe5d74be558899aa02fadf1bbe475c6d5e5bc43aeab

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: imops-0.8.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5fbb7acaad3584de32ea915793ff25680271d528fb5c4347dccda8701af49fae
MD5 e36cd1c8fdac1196aaa77d8d9302a99a
BLAKE2b-256 05f27579d914eea37022e62288de0da51a61fd57b86427dd8dfaf257346d86b0

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5b96fa0fb9960321f9ad964194556b7e7a586bd902ff137f30c5cde1b29754bf
MD5 0b22d0de18b38855f4a88ca4e810076a
BLAKE2b-256 56e819d9759cc8d36f3f573bc7fce18c6eaf211dee98bf3f5d9a2c0080b5c384

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a8c5adb65b2be92cdcf08e96ae2670bb11d3ac94715c945fec7d1c5ae321e16c
MD5 99c34873e9c8c35ef5eab0760710c435
BLAKE2b-256 890e7e2cd8fcc024abe4c2c929263782bd43b24df8eeff2a8010745d521ccc10

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6810cc0755b0d96e6f9a43b4bc8202e5eb38d0c39b135a5aafa2155fa0af2847
MD5 29ba2e43cc8de921f0e8b58227180e3b
BLAKE2b-256 dcf91471fc48a23d7aa7261983e78523bab35c52f20d1bf21569e5f3064d084f

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eba62456ea9cd30ad0112b90cf3e0269332ad67066b68bf3ad3f777998c5234a
MD5 7e2f6a64eb160e35a1d3c92665e10310
BLAKE2b-256 facba4eb1bba5507a89b16190467126e0ca8e0212ac3a95243821c10e8578e67

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a36e9d78216a8b8286c6122ade938c944d7a7a66f2d19c0e258124eefe284986
MD5 665af9fcffb8530bbd1929d2cd454773
BLAKE2b-256 46a2c1e435686702328dc92aef4ed2c8b1ea3fb3c6fd605c79236e3b22e2917f

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 98f2008085d1d657362a18b98a1b47126d2d8bec5a7c9c65d91ced4971e9c2dd
MD5 e7249ba8f3ca3619634949b7a7dc29f9
BLAKE2b-256 2e81ba1a553e2eafda7d8e85153439d1300fa0cb90d8d699c8c1e992063f8af6

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.8.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1d2e0a9ce9624ed110dadf1937a93a455d270aa4323faac927759d0450ab78f7
MD5 3d0c7c442629e92357aea0da3dd4c3ee
BLAKE2b-256 70d66e1e8711c60a42099e69eb92852ba4c7c3482e775fd555b0b9897270ef19

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 11b7f682041374f50722d583d8bcf6783509a80621e11a4893bebbc7603b3b3f
MD5 9352d6553e7c0691c1700a36cfd6f0bb
BLAKE2b-256 e1ced0a1f0e47ddedaa261ca863d1d2c559257993a97ac65a490a94eeca526b4

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1571a0beaaa5ce1036ab2113f48b7e9554977e7abb8c32d6cdc354d0e1f67e05
MD5 382f78ec2e5c367f63c9f4a0d968e6fa
BLAKE2b-256 5b530ffdac5ee0843369a9954856f13f1a96fd35927b21b3929fb8029fe54d7d

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5964a5482b4cac4a0a4c9abe7008dec5b1aa6723d024f3fdce408c18493c7fb8
MD5 4ca89d7f9ea3c0d9708f6a78e339adba
BLAKE2b-256 ea1d6d25f7797144153e5d40e737fd8d4607c730f81808026b7c4ad87974966c

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3daa19705c3aad33fde6e8fc29dbfbefd58abd1f6a80d82dfc05228d93e020ae
MD5 71e467becc127953fca789cc82a8002d
BLAKE2b-256 93ec79870ecc44405811b44d060ab4955576d0e06c51dfc26e237d7ad0069b4e

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f29d33207418550d7d855cbb1bd41b55aca06fff54ecbd70412b1856f1f5ddf
MD5 92a1f3627b10168dd4926f7929e582b2
BLAKE2b-256 45feb13e207b1820d077daf4887d2eb44575ae8081e34bbdfda3fc78e7d3b43d

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e52c81a2889f078d438e8b81cae26fd1a90954a1e465dfacbee221ecb3d64ad1
MD5 b4dcadc8a877fd126c5ef0593e774ae3
BLAKE2b-256 7e6daf3f3d9cf8d27102b057a2d6a194a684a78d503b6e83db036fba88ec83cf

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.8.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 16a6e599a979cfbdddf4bec6ed9ac04b649ffc800645b7fd0555eb7d2beb85ba
MD5 2a6c74199a8aa3dab08ca51a21317962
BLAKE2b-256 e5c24f69eaa79119351f91e548b0654fc47c041c9f131de76c94d7ec8dc0462b

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 294b26913e2bcd39ab4b2d0310d2bd6384a749800d5015c5fe9530bbccff7be8
MD5 67428a0588b58f85fa66587573e4b935
BLAKE2b-256 9f0555dea982108db6139fdc511f28c5b2607e3dd991d006c597e1795dfcd697

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 68b94d8e07163e71355b006562b4be9caad4890dcb90651344970889fae928d7
MD5 e721f1eafaa24860b8adf0cad4b993a9
BLAKE2b-256 116c5ac8e939157e377aa8d7f2d9494fa7e4b2534eb1a9fd2770d4f73ea4ad14

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a13699bf425357b26d3f307d2a2cf8d95626ab7400716e2787b8964f9312e05
MD5 dfeb01fccefd60880724251746e2e8a2
BLAKE2b-256 7cc53ee02ef077bd44619ddd635126902d0e8e1517dbca3275d5109903e9f57d

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c75ca67ec6af24470723b0da35df352cb184d43f6b1360a576dffb9e72837950
MD5 2653c5e1e361b1cdc46edbd71626e977
BLAKE2b-256 2abbb5afb223e0bf97713a0a048395aa1cb1667c27decc1228a51401a5523536

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29dfa66771e01a3ceb4c5f1f5dbbc3ae2af7f552b37154fb772a5563d8cc1c65
MD5 227be4dcd07d2ad9c54f173c2d01ca7f
BLAKE2b-256 5c669c1c4bd108e2a2597b0d34ff12511dfc736e55a0b143472e5eee370f79fe

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b6fec36c1b61cf4b5cfe1ecf10861b7bad2456c977365164f5a44750d619ce56
MD5 20aeeaed7c78c290e480d37afc9d8c4f
BLAKE2b-256 919aa6ca0553aa339bbe46e9414fd9e03909efd4fc19660660c61776dbb740e2

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.8.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4eff00efd4681a6835f051f8431f0902c0a2db0b67f8093b6d3048229753056f
MD5 5a62941ae234ea7eadb4d5e8fe134496
BLAKE2b-256 f508b74cbc5a86c2cad3f251f744370e1e3fd3cbc7be5860ace62a0c7e83e28d

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 911ea0e5699c3edd66dd3f15b32d1eed3bfaa004cafe39053c3f747b1da27012
MD5 c0b0793f8b19415de1dcbc6d69857286
BLAKE2b-256 ade003a023dbbeb1bb9def8781131b112cb135359a8e9196ae2db7c566a1c973

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 80ff46425d13667ab4796011e634c8632b08340b3cc85d869e0d7446c0fa78aa
MD5 948e4bfb7bf66055dee315da180f0769
BLAKE2b-256 f1b85ab1ec7f36731d95221f6a109229465b0f117a147b5e001611636ead9b8d

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d87a11bd06ae1c474e65146e0c9e8d211aa2d89e3a33e0452edf3d9a4f7e8fb
MD5 97080234e0ee4ddff04ee6451d8c26bc
BLAKE2b-256 1b00f93789d44626bbb61c971747b6a97d62bbc938e169534e15184a5ef7eccb

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 11070cdb30e01ed0e66ef0b892305688a94f4a12fbc81952209cb4a7a0040e9e
MD5 aab034cae400e7e5a3745aa1272be5a0
BLAKE2b-256 e97ca6b9cc8d11249fce61a55df47bf67e4c0fce06691e4c725e5434f75f9473

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a374f4b1fd603baa6e25ba58e87eb9b8947401e46ceadde81e901818b419fd02
MD5 a44d3e3b8e1c8e1f01f4aec92d45690b
BLAKE2b-256 bc022046ad7900329e745a906877d532e088a01b4a94cea6ca1f6414fd6dfaa0

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a4f9f6235c8b0e0989d3d4be2fb6142dbde104c76d21ec3584234297d1370dd7
MD5 d2b332df1f5f22985ebbaac4732c61d9
BLAKE2b-256 a1100a9cf0ad38b98a0af513e8801e9fb68a7632fba46810aa37febcef92cfc8

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.8.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c272f662ccd67b4fce6b6f355fd43b0d00f2bb139989ca24b407cc15b8c3bcc9
MD5 250508d097ed0e3cceb277e95007674e
BLAKE2b-256 06f243d57dd68275cf83e4dc53a628c9946c965b560af1504ef4734e5bfa4341

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d148a2c8c03e682f543f100bf0e79fa42085bf7e4c9613c5eddf30b63d9e219b
MD5 efe05977c588bc7e1fa34e1f0761227e
BLAKE2b-256 c2a71e5d0052ae68304164ee6010b698dd97c5419e4d039f587f7009239d41be

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c23c9bcdc10ad81743cbded4eea4f7daa1c215b7f4dc9a40c4adef287db5ca9e
MD5 ac8797855fbe8b8246f9584f379d1699
BLAKE2b-256 6da4554d08ea5703fe67105bd7a818fda55d44cfce2bb4a0b2ca4f1f59a3c93c

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ea7b52aae97d91a8e5709f9c05dc0cf67491aae0ed4dac25ad2ac87055dfcf7
MD5 da47275aeb2a1a854c1efcce06fff3ec
BLAKE2b-256 e3b58075fc8bb3e7ba1c9384dc8e2d013db6c15080d4a02b363acaae6910f142

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e7b22573d09a14eed24e17592d37aa568d6e22f6d3ecf69d71e26ca24b0ffd52
MD5 0f84142993b2091fc1b18b95ecf43f82
BLAKE2b-256 24b8bf530a461c194eddbad9b057a17cbe3785e2d96d21afb0dfa4bf0f8d3490

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0cc448bb7f9995b7da0d1f0ab8a2e96b156385041b660fb27201618150b910b2
MD5 a154916f9a81f6f565ffff2c2b8e4300
BLAKE2b-256 2208a3ced95dce2439bff87e36443bb5460e2b0ca30a01b67b3c8ee47e4ed1f5

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d0d0327fd07d2bbaea33bfbdaa3317c3f7375566d02d080cbc53470ab66bc399
MD5 49293ea641d0981cdcb3de999879fbd8
BLAKE2b-256 c412d13a4f1da3c6ba92c30ea5f4580414bdee79f39c113584e9b9b9f5cee1da

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.8.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 fb50b5c6478283324a39cf1699e28502dafff283a9b0edf0aacee6fc9a77a777
MD5 21f9287e6d127be4bba51cd88397b40e
BLAKE2b-256 82bdc38a218bf29374d3c7d1571b05cddfff638c2224345ffe4bc6c4ccb58d87

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cbe40339df14b9d596c4f220f770a26a582f632169b3c80a22061f5bc983a028
MD5 42647d97a3b5eed13880668e06c44670
BLAKE2b-256 42241b5aa29136b39a1fc6e4c5f54650bfe15950d7e21f19ff354bd598b8e104

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 afa35096df559f6839173be01cf9444c52a4e2b128dd7aaac1ea1e4e2503661f
MD5 44e97affcf3b5356de84c966cf140d8f
BLAKE2b-256 4b75da1e9d49438d2e87be76e30762b81bc3f3976f582a2985fa29358d78fffd

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1baef86defbafee0fc33c09bee7316c9d01d8822e9ff24982e8fccfc1b1967b0
MD5 9196b45d7dde41994d7967d7f5e8c220
BLAKE2b-256 3d656f7a943d5fe55938064fc83bc098ae6702f6740d12a6c065c1dd18ce4c8d

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a0083d169f84da0e8452b5e8873ae8a512b4a96fae4ca5b658a13f273375ae5f
MD5 57d098d98adc145df53648ce5dc97a91
BLAKE2b-256 f7d86bf81ad906924951469b84497f99845a0212b43747404bbffda4f5327c57

See more details on using hashes here.

File details

Details for the file imops-0.8.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 57afeee10951a8f08c37c4b256c434cc04a2fcd910f63b2014af50f1e157c067
MD5 9fb44435a566bc2a0912ce42a1e0e641
BLAKE2b-256 cd4011ffdef2278f66dc8342563e81d8363ee13826c56eb9ac1d0316de6807ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page