Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

How fast is it?

Time comparisons (ms) for Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz using 8 threads. All inputs are C-contiguous NumPy arrays. For morphology functions bool dtype is used and float64 for all others.

function / backend Scipy() Cython(fast=False) Cython(fast=True) Numba()
zoom(..., order=0) 2072 1114 867 3590
zoom(..., order=1) 6527 596 575 3757
interp1d 780 149 146 420
radon 59711 5982 4837 -
inverse_radon 52928 8254 6535 -
binary_dilation 2207 310 298 -
binary_erosion 2296 326 304 -
binary_closing 4158 544 469 -
binary_opening 4410 567 522 -
center_of_mass 2237 64 64 -

We use airspeed velocity to benchmark our code. For detailed results visit benchmark page.

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast 0/1-order zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=4, dtype=float32 or float64 (and bool-int16-32-64 if order == 0), output=None, order=0 or 1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For all heavy image routines except label you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

function / backend Scipy Cython Numba
zoom
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening
center_of_mass

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.8.4.tar.gz (46.3 kB view details)

Uploaded Source

Built Distributions

imops-0.8.4-cp311-cp311-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

imops-0.8.4-cp311-cp311-win32.whl (2.8 MB view details)

Uploaded CPython 3.11 Windows x86

imops-0.8.4-cp311-cp311-musllinux_1_1_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

imops-0.8.4-cp311-cp311-musllinux_1_1_i686.whl (9.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

imops-0.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

imops-0.8.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (10.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

imops-0.8.4-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

imops-0.8.4-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.8.4-cp310-cp310-win32.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86

imops-0.8.4-cp310-cp310-musllinux_1_1_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.8.4-cp310-cp310-musllinux_1_1_i686.whl (9.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.8.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (9.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.8.4-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.8.4-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.8.4-cp39-cp39-win32.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86

imops-0.8.4-cp39-cp39-musllinux_1_1_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.8.4-cp39-cp39-musllinux_1_1_i686.whl (9.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.8.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.8.4-cp39-cp39-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.8.4-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.8.4-cp38-cp38-win32.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86

imops-0.8.4-cp38-cp38-musllinux_1_1_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.8.4-cp38-cp38-musllinux_1_1_i686.whl (10.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.8.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (9.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.8.4-cp38-cp38-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.8.4-cp37-cp37m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.8.4-cp37-cp37m-win32.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86

imops-0.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.8.4-cp37-cp37m-musllinux_1_1_i686.whl (9.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.8.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (9.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.8.4-cp37-cp37m-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.8.4-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.8.4-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

imops-0.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.8.4-cp36-cp36m-musllinux_1_1_i686.whl (7.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.8.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.8.4-cp36-cp36m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.8.4.tar.gz.

File metadata

  • Download URL: imops-0.8.4.tar.gz
  • Upload date:
  • Size: 46.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4.tar.gz
Algorithm Hash digest
SHA256 52a6823b149e36ac017f0bbb5d706a0ca2cb37dc1468419d91713550619c0f7d
MD5 16b3e66e6e4519c5ac8ee5c209251d8f
BLAKE2b-256 189699c69f005469b2ef7c5d18071fc826d0393a4f3e26b6f7000ffffe596fe2

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 887652961e500577386a3eea9a2473f00460865be2d918aa0bce039bf7a2c625
MD5 2bc7140bd86506acd6e8a5b00d460ac2
BLAKE2b-256 32c5ce6a429104862b6ee54b7a73114f322954d6e6790c521ff87b6ec302beed

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: imops-0.8.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1e05f947d6776acc2c3769a06b524200050fef9eb0cba8579fe57be370ee9f55
MD5 757a73211f6926d1ef8f3c1d9cec448f
BLAKE2b-256 daaf8e33316d9d87a04bae2e64ea86e08bbdd32435fe285f6e2da6521a8632e8

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0df799467e796a9a17d0aaa7a638e0ca878596dead4f1e2534ba85bc0ae8601a
MD5 ca86dcdecc7d928f41392aa65b07d18d
BLAKE2b-256 6651013fd7f328cabaa9fd81fc6f9092f2a4451903d821b5a6591c3e84cca9a6

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bf190525fb795b2a8e5e30429126029efa531c9dd5b3114275e849c82cbe94c7
MD5 dfde60f2c9b3b5f1b5056f8d04ba696f
BLAKE2b-256 0ba4a9bab36be6ee874693fbbd91d661da005fec0ceb7fa41cc9531e942f381d

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7d5de03b2030eaf6de6e31690406f1143b3f3f1f8fb8dfed87f3ddcc6119b10
MD5 0c203d8fbb0fde1a4c967579c8fa42f4
BLAKE2b-256 61a81e5f9abd52b1d3f90a87fcddab4ed890a64b707cf5464ce6a7fb41d274fc

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6f640914bd5a847bb9000942b46605bb7e786873836f032fee3ed37dcff18c5e
MD5 ca698d60774c4847092e4695f5f07864
BLAKE2b-256 66a6869e6fbb349969502f0c9441892a1a6a88896f5c48060513b03dadcf391e

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36e0d08356d3b882c4469a514416d46b672c5fef8bf043c14de3ae0b2e0aa366
MD5 67c674d1f0be1f03a42a7f53a454c443
BLAKE2b-256 b651806c56198cb9749151e5fcb4977168b50073293dd3f9fe752d90d8f668cf

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 972c45efed3c985e92ec62edbfee1fec6ba038c75cd8c4f11a4826c62d428b73
MD5 c0bb2432ad8b7860785910c8cbe59602
BLAKE2b-256 ef12848b92f9968c8deb1afca3c0f2f609a5a1db9235c83df72b2ddb72fdbe28

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.8.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 62dfa27d2a72f40f57fad963dc2a965384b791bf592b0260efea294e179c1f52
MD5 2a1db4b6930c5ad703dd4e5741684249
BLAKE2b-256 1d12841d0979d1b37e73b5d53a098feef5e3fa3a0bb3d3a49d0e515b938b44de

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c99cf1e27f35f555d2fefb2b65aa90e95f3da88ade400fde715804960731daa1
MD5 5f44397ec86ff21f25d93986000b7f45
BLAKE2b-256 e4abf93c39beab2398a0ee4f278874bc00bb8bd94654fe70e4c09892be6a01f9

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 206a26430bba3885ec487c833042ad0a7594a0051550aa2b33c4d25e20c9d4ff
MD5 e6498eef682f6bf02ce85978792c785a
BLAKE2b-256 5f201d4b884ccf2fb50fcd05b7f9a8fbe4c29911a2cc5105ef69ab4e49af4e77

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 773afa7d8245a19130c306ec183215b4db16d30e8b4d0d7a337321d8c8784bce
MD5 0d6276d6de10b1a4b0d119d73062a06d
BLAKE2b-256 6655f5dea9adc7a2865eb7cf2df97f98e4f9229ae95a2d7c5ea192dc0899f4b6

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 52ff5db79a7e5c0e8b05436e1c79e73e07a977313f4e63dbd2b8e38ab1b43858
MD5 6b50647bfc047b2f1b7f3efb82dae437
BLAKE2b-256 d87a5a118006b10c73905a9f6f6dc18faf3c7c1ce4c24f679336f57a51e6133a

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fec1ea4e6f5522602e51d49191ba4742d523a9c9d673b7728763118ec516252b
MD5 66eff12b50b396e5791465aac31ab8e5
BLAKE2b-256 506fc4ef5cee1da3914a2d629975a2ded0877720f906c5a95c6c2f1018e3baf6

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6ba6c84911febdff4689bbe0c193bb534a131fa0832d0323928df530cb4383ba
MD5 962790ab834fdff6e2ec825a08b9aedb
BLAKE2b-256 c605591bf5126283da7fbe2e1583385be7b689e886ea3820ab8be3d523d2a0f6

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.8.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f057482488ef9d7a5f6cddd8eb6e69077c8badc60540d9d0c4353abe66c57cfe
MD5 22b91e80a432a7f49d2cdf5cc81090d6
BLAKE2b-256 4fb2332694f38a305ddd44e9d0b99f69c0a01e30cfdfe68207998a90b9836280

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88e1ad8b428ddf5f300ee5aa01e6385014eb623356ae840706ac51dd39a98673
MD5 2e2ebe64dd359da258751edbc03a5c53
BLAKE2b-256 4d2e96759a62a5fe4b222e046b8f008305130ec001d0d0b75e82d376566e115e

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d98cb7755edaae1c55584b899b13eb502f6cedb1b05c15077e44916659436d97
MD5 bf6a2439d13bf1873f0b0b2bbb1eca43
BLAKE2b-256 b0789ffafd464da67fb9774321b21ec048918ff251771e3eedd8ad487035e99c

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1024691653eeabb426593b71f599a3256fdbf14990e8a0049374e4a74ae31a8
MD5 3b2ea414764902f7117242eac2133da5
BLAKE2b-256 8688181c8d5c1d57a79d3004306ccf077bc19d43a37c271068bc0adb85bdc41f

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b0f29ac7094c7a69b32a665d2d216f72432d654b3dbf0df2ccbf8522ef9a205d
MD5 09aff7a4fe3c6d8cc9283f7cc111c37e
BLAKE2b-256 9ba5bd0157da4a47ee1f57d7c36e5157c527a943aacfa9745cd25218dd9ab277

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b37909404c7c5d99c14fb429d509d8b1fffb63488f5fce5956b0e53598f159e6
MD5 eefc134bc6627113777a31b9a1c581aa
BLAKE2b-256 71c1aa913f1d05a52fc9e9a009b758a567870adb094c3da694f22bfb142b9177

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8a758566fcd832ec22e903de314f73da2b584b69c1cdb92263cfcdd66401ac80
MD5 cafe1954b17ea6403b4180c2aa1d2d2c
BLAKE2b-256 2ba25651ef857c83995709600c609cd9922a1e9811a8ea746f6b6d95a5c9a6f4

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.8.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5e702d8f2c3b938309efcf37fdc87b3e27f6bd127d393ae8342f6938abd2a613
MD5 69c1d236a98be17c0decc1c8d0b5dcf0
BLAKE2b-256 a3eec8a78c43eccb5082e5a7bdd9db5b0cfb562c2db02072421dc65d27dba596

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 89bc5edd589356a7d4058d27b255c5649ae64ace33c04c551cbc633199d9b98e
MD5 407354611d8d139a18ee9abeca3b2aa3
BLAKE2b-256 f7c3541df33050f17733769af883aa236f3643ea79243e46bbe37bef50beabc7

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 90134e46c038e8048f97074b0934e60768b9852a3a5e837d8dbf7439ed47e16f
MD5 4179be8b7742beeb92e365dab51304bf
BLAKE2b-256 e1295ad4b3af778aef77ec2596ffb867ffcfd7a48cf9bc711440af19bc644ecf

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71d23913c297590a41bde5f771e3a0a64ab9f897880529c50be931c317116062
MD5 db390399d43c7e2e9de097968d8804f0
BLAKE2b-256 2f6ae709f6d5402c5fa61de63b77065c5b62adcb06294a78526db490d8c8d70a

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 74388f70c9fc1a76755d8d229349f6b88cdae34b9520301d8b2f6ee01e7e56ab
MD5 981977aa58aeb12d81c3dae2a2980d82
BLAKE2b-256 37e155362056bef793c7b349fd1cba316da0a175038635387029dfdf020a1656

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f600dea9d1ee92c7607fe215edae749fdacfdeed45bb2d4a9b3b0c8818bc4609
MD5 1cad8d9afc12809afa3f510d47440c0b
BLAKE2b-256 9ed46782f9a27b50891d7cb73eaa0f16463bb467ade36b801d7fdc42df190b5b

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 db769ec11988b24d0479eaaacc1fbfe376cba696e94495ff60b4f9f9342260d1
MD5 38e048bf49612629ac41f7b67e9f13f3
BLAKE2b-256 a980b76a63902a2be4880035ab0903d284adcd7e646a656d8340576668dbf288

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.8.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 18fa8642a0d1ef42f823f339b5952e5f2402222c6f23d660caac31207823ea1d
MD5 ee3a39dac3ed394cd53299803a013aa5
BLAKE2b-256 337b5eccce7bdb33452f892fbf7564fd443f3845c32305d70112235c680ac302

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 af9473bd9db71151eb068fda80fb5ce34ec8b247a071a7859b86c5b54bebf3d4
MD5 d13ab6b0f23a2d44542b084f8ca44d53
BLAKE2b-256 4a95693aee27781eced4161dbed86a06b693ddaaf76d8033a1b8f8264d24eaa4

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b2b4c7ccb38b49f6e31271c5bd5ddeb84037e9fb8fede5ca9201a6aa23746e9b
MD5 209078e9f5f5e26e1572a6f86d41b3cf
BLAKE2b-256 f4cf13decb41679e7af276bbfe4d4a05ddecec2dc8ae1496dcbac31243101d73

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f7417330284de4da2324e49bbfa92c26bc8585a8122e5306f3fd1956a46d1a3
MD5 67a096afae1a80651e69dafdf8786f57
BLAKE2b-256 fe9d6e5d7ad8455e1098f849c33cb814f6b9b593b8ae1d370c0de394a906542c

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 118814bfe5b1f48fb7fb2e371d0440222c4f0639a73de24e3e36991251f81621
MD5 2de2677d7f8216bf07cdc73733b2b8bf
BLAKE2b-256 49e1859be144cac2e34cee6eb59274d711a6044cbfad66942617fc17377ea5ac

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8166827444d33bb2441ecceb43092c0a8e02e5d883472c5166b9bc5ae235f15e
MD5 a607b75c69aaa51c33856f29cb271ff5
BLAKE2b-256 1e1a159d85ff9a1f839c8134cbf299b0278c54a8de9164d6d6f8237c2920b556

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b54dfc662a692bacdbe8fbc9ca6035d610e438e0b7cd4aec0dcdf6d33c9cc49b
MD5 ef6f64c4dd2798bce86db14ec6cafeac
BLAKE2b-256 9e2333bbd22a933cff23101fee6feeb75c526859a3490e4f06bb56d1ba9d7c26

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.8.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imops-0.8.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ca1dedf103ce42d21c4b78d0ca12271f0bbf36b8df4b8ffcaa5c42e7b2030aaf
MD5 40cce73e3b8753c770699ab067a47f7c
BLAKE2b-256 c1e152871b3fd5fe5bc5ba5c9a9d44e9d5fb40458028a8bafa5d285e2b61c7b9

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 307b78847ac19b8d89516f0ad6da274a474c61fcc5654a756f347f419a21959a
MD5 3f38f6ac2b48f924643933e0dd2b3f2b
BLAKE2b-256 9d3a8b5b6b6d3d86d90c42cec4784d4588de10aff19e9327493b4400abdcd489

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5358982b6e199f75baa19ecbeb5045b3f892c7691342d21bbc35fdfd33ed0f1c
MD5 b0642c6192791482cc0dfdb97d2ba884
BLAKE2b-256 c8be0258fadc2d139704ea5a0291c2fe6190afb11b26df54933eecc7b7edf6d1

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2307ce1c17ecccb524dfdc3d441514caf954af742956cc8cb5319c7e964ddb9
MD5 bea396b8780b4c333856d83fafee6146
BLAKE2b-256 fe0c28f086743e5aa58d5ba198b8b4dc38748fbe478ca11181a031e299021e99

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 79d75a540af4b4fb0a5908d9f483c68562e07f4bd36bd2f2d20e45649fc1a1c0
MD5 07b9b42160cca2c0ee3b36cf1d92eec9
BLAKE2b-256 f5330db6a9da676486be307db28f3688524936e9ebfbfeaea8751e9fb6d6faf8

See more details on using hashes here.

File details

Details for the file imops-0.8.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e88144868c81493b67998f57b340e07575bd41b2c37fd5cb5b6645bfec65d0cc
MD5 ad7ce777552670adc71d05aa383d4d97
BLAKE2b-256 b54eb4ef1197139b5ea341e1815dd4b0b300b0222af47e680c89e60ebb96938a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page