Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines
Project description
Imops
Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines.
Install
pip install imops # default install with Cython backend
pip install imops[numba] # additionally install Numba backend
How fast is it?
Time comparisons (ms) for Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz using 8 threads. All inputs are C-contiguous NumPy arrays. For morphology functions bool
dtype is used and float64
for all others.
function / backend | Scipy() | Cython(fast=False) | Cython(fast=True) | Numba() |
---|---|---|---|---|
zoom(..., order=0) |
2072 | 1114 | 867 | 3590 |
zoom(..., order=1) |
6527 | 596 | 575 | 3757 |
interp1d |
780 | 149 | 146 | 420 |
radon |
59711 | 5982 | 4837 | - |
inverse_radon |
52928 | 8254 | 6535 | - |
binary_dilation |
2207 | 310 | 298 | - |
binary_erosion |
2296 | 326 | 304 | - |
binary_closing |
4158 | 544 | 469 | - |
binary_opening |
4410 | 567 | 522 | - |
center_of_mass |
2237 | 64 | 64 | - |
We use airspeed velocity
to benchmark our code. For detailed results visit benchmark page.
Features
Fast Radon transform
from imops import radon, inverse_radon
Fast 0/1-order zoom
from imops import zoom, zoom_to_shape
# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))
Works faster only for ndim<=4, dtype=float32 or float64 (and bool-int16-32-64-uint8-16-32 if order == 0), output=None, order=0 or 1, mode='constant', grid_mode=False
Fast 1d linear interpolation
from imops import interp1d # same as `scipy.interpolate.interp1d`
Works faster only for ndim<=3, dtype=float32 or float64, order=1
Fast 2d linear interpolation
import numpy as np
from imops.interp2d import Linear2DInterpolator
n, m = 1024, 2
points = np.random.randint(low=0, high=1024, size=(n, m))
points = np.unique(points, axis=0)
x_points = points[: n // 2]
values = np.random.uniform(low=0.0, high=1.0, size=(len(x_points),))
interp_points = points[n // 2:]
num_threads = -1 # will be equal to num of CPU cores
# You can optionally pass your own triangulation as an np.array of shape [num_triangles, 3], element at (i, j) position is an index of a point from x_points
interpolator = Linear2DInterpolator(x_points, values, num_threads=num_threads, triangles=None)
# Also you can pass values to __call__ and rewrite the ones that were passed to __init__
interp_values = interpolator(interp_points, values + 1.0, fill_value=0.0)
Fast binary morphology
from imops import binary_dilation, binary_erosion, binary_opening, binary_closing
These functions mimic scikit-image
counterparts
Padding
from imops import pad, pad_to_shape
y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)
Cropping
from imops import crop_to_shape
# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)
Labeling
from imops import label
# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)
Backends
For all heavy image routines except label
you can specify which backend to use. Backend can be specified by a string or by an instance of Backend
class. The latter allows you to customize some backend options:
from imops import Cython, Numba, Scipy, zoom
y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False)) # same as previous
y = zoom(x, 2, backend=Cython(fast=True)) # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy()) # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True)) # same as previous
Also backend can be specified globally or locally:
from imops import imops_backend, set_backend, zoom
set_backend('Numba') # sets Numba as default backend
with imops_backend('Cython'): # sets Cython backend via context manager
zoom(x, 2)
Note that for Numba
backend setting num_threads
argument has no effect for now and you should use NUMBA_NUM_THREADS
environment variable.
Available backends:
function / backend | Scipy | Cython | Numba |
---|---|---|---|
zoom |
✓ | ✓ | ✓ |
interp1d |
✓ | ✓ | ✓ |
radon |
✗ | ✓ | ✗ |
inverse_radon |
✗ | ✓ | ✗ |
binary_dilation |
✓ | ✓ | ✗ |
binary_erosion |
✓ | ✓ | ✗ |
binary_closing |
✓ | ✓ | ✗ |
binary_opening |
✓ | ✓ | ✗ |
center_of_mass |
✓ | ✓ | ✗ |
Acknowledgements
Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by
the implementations from scikit-image
and scipy
.
Also we used fastremap
, edt
and cc3d
out of the box.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file imops-0.9.0.tar.gz
.
File metadata
- Download URL: imops-0.9.0.tar.gz
- Upload date:
- Size: 72.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45d6707e0c4fd571162e6f57ebc73f40237e835d7eb7cbd34f127c6ef77c6afb |
|
MD5 | d45baf87fe8eda59348561b376058d4a |
|
BLAKE2b-256 | 7ecfcb150c728641928f42fcf2b9a77e38256580e28483fd4967ac2ac2d605d0 |
File details
Details for the file imops-0.9.0-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: imops-0.9.0-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b54e20b022bbb7b986e480f208781607b1ac11db7906722e412b10b5896abd38 |
|
MD5 | b754f196bed2996de22c0ca23b6fc9d9 |
|
BLAKE2b-256 | 96f1a5d122f0649b616d912ed8c8ce6f472f84bc123b685031958b6fa578f917 |
File details
Details for the file imops-0.9.0-cp312-cp312-win32.whl
.
File metadata
- Download URL: imops-0.9.0-cp312-cp312-win32.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.12, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59faaf9e8a4083016d50a966a8dd5b3390b3a8a146ad32039793c9b1b68accf7 |
|
MD5 | 298bcf901e12a476975e9a3489adeb3e |
|
BLAKE2b-256 | 7612cf20c0d25544330324e029d5e82b5941cd6df0f20403f2702465dc0c9a80 |
File details
Details for the file imops-0.9.0-cp312-cp312-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp312-cp312-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 15.9 MB
- Tags: CPython 3.12, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85740dace00ffa4c3a0c75a7f6b8523d706fc6b51e739c209e953bfd810978d4 |
|
MD5 | 550e0cb09c810cc04480088744bd4438 |
|
BLAKE2b-256 | 2ab10352ca2a68ee9381e7616a47abfc2e654be14e39e34e0cb4c8e57d442c66 |
File details
Details for the file imops-0.9.0-cp312-cp312-musllinux_1_1_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp312-cp312-musllinux_1_1_i686.whl
- Upload date:
- Size: 15.2 MB
- Tags: CPython 3.12, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d3755bcefd17e6e16d0f9608dfca7130ee1aacbb962eaadec10855f87adf3a0f |
|
MD5 | eb4ebea939a16bef3add38fabd8ec3ec |
|
BLAKE2b-256 | 030de8c0263a1e787b0dd555e95007adbc46b9d6fc526b074c6991c6e748e295 |
File details
Details for the file imops-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 15.3 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00dfcab0650a2fde8cb4039ebf77c4ae353d46537d57b7074b551b0dc5452391 |
|
MD5 | 9b70ccfed5ad9953f9cc0d9015784f76 |
|
BLAKE2b-256 | 9213ce9cee280a22a7bd8d3a5052cc7326ed6594a0347fa256d0fc6f7b614efb |
File details
Details for the file imops-0.9.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 15.1 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa15f459e5ab4dc6abb4c84e301e8036cd4e0e87f602200b0f84910d682bee40 |
|
MD5 | 0858ad8583cfe6a68670f7133b91cd81 |
|
BLAKE2b-256 | 99db26df64fcc7032093795c4b220b85ce80649f09e73e81703cf5c4df9f2c44 |
File details
Details for the file imops-0.9.0-cp312-cp312-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp312-cp312-macosx_10_9_x86_64.whl
- Upload date:
- Size: 5.0 MB
- Tags: CPython 3.12, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de3b0bfe41329fc30c8dcbd21ad34909d73cabf93ad609c31fa4e8b2365a1617 |
|
MD5 | 054b87d236f98e4f7dae4a1bdfef8eca |
|
BLAKE2b-256 | d17fd30a5b58bc94375598f3a7bdea7cdfd53dde502377b25b4a915808508467 |
File details
Details for the file imops-0.9.0-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: imops-0.9.0-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 455c6e1cb7bc1988912bb557b75cdc97c27d98dd06ec1a3531c08ef50cd95e57 |
|
MD5 | 6b0d2d781ae0b7486458fa7c224a36bb |
|
BLAKE2b-256 | fc2340ae3d6831e2d20bb345dbe26c6cbc49a3888ad83d4bbe6fa2c4294732f8 |
File details
Details for the file imops-0.9.0-cp311-cp311-win32.whl
.
File metadata
- Download URL: imops-0.9.0-cp311-cp311-win32.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dadcfab9b6082fa1e998f72bf53b5610f566fa775c4752dcca8fb49a734c5fd1 |
|
MD5 | 67b091b5fc6aff658556ea5fded4ad49 |
|
BLAKE2b-256 | e3583ce9e742b41a958c1bd48c1b3e27402f85cc9988258b8c094f2b97f95dc8 |
File details
Details for the file imops-0.9.0-cp311-cp311-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp311-cp311-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 16.1 MB
- Tags: CPython 3.11, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 445fdb19caf04d4cc43a80c0f93ae16fe2f49143aa730fee07e925cfa9e82851 |
|
MD5 | c59a98e4715e222a95ae09d003843d44 |
|
BLAKE2b-256 | 2da823865dfdd5c9a76ff47270aa0e00e67b200b9ec7f0ea25bbe03456a89ac2 |
File details
Details for the file imops-0.9.0-cp311-cp311-musllinux_1_1_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp311-cp311-musllinux_1_1_i686.whl
- Upload date:
- Size: 15.5 MB
- Tags: CPython 3.11, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 059c19dd9235b4b792e70d134dff156dd797ed600dacf6296be8d49357119dad |
|
MD5 | e510143d4bdfa2e573f89449c1e790b7 |
|
BLAKE2b-256 | c3e0fce68372ad6b0c35faafefbe4b7ecacc425b8da8e63ec5a28cacd2d9eb3c |
File details
Details for the file imops-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 15.5 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 04cc449d209aa36eb92bdcb281d25c1c41c473dd51347dd85b3275a39fa413af |
|
MD5 | 0ac8e20ed7752146ca2e305ef6966fc7 |
|
BLAKE2b-256 | 59b154a6c6ce967596ef80d672b93beeb331b9a48f1bb9cbe5078f3dc05c831e |
File details
Details for the file imops-0.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 15.4 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf75e393d7c878edbae25aaeb730c3098a4c82e83280d335b7004a1f27099f43 |
|
MD5 | 99a5165e39975c6966a31ec9553ce078 |
|
BLAKE2b-256 | 9c07a2052d6282d3085309f32561e24a2f3c26a47d6c9e3b92e9c1ff4b6a6d69 |
File details
Details for the file imops-0.9.0-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 5.0 MB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ec6e0c227019fbc0ca3f3dadfea27f7ff6902d354923381cc2608a2c7844252 |
|
MD5 | 622f583941cceef2b05d00e8b00a0a0b |
|
BLAKE2b-256 | df1b2f813883db9f09c7538f97006b8be9e6854ff045de2c0ec22cd7f9da6a49 |
File details
Details for the file imops-0.9.0-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: imops-0.9.0-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ea1597451e766dd832a8cd4b2c519a9c8e9e97437f07119d0288ec195d6ed8a |
|
MD5 | 7c11265fb75c55b91ea2096e48e6ab7c |
|
BLAKE2b-256 | 08fe243cb1d8b25e42eaea5d79a5f2d3b567fea1a11a8c0fa26c917d7687c752 |
File details
Details for the file imops-0.9.0-cp310-cp310-win32.whl
.
File metadata
- Download URL: imops-0.9.0-cp310-cp310-win32.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c700db4e870614a3740c4c838f67da1e478670a9c0b7657c206aeade2be72f1b |
|
MD5 | 7457719c2efec7cae883c10a77d2146d |
|
BLAKE2b-256 | 231d27231437a0213edc42eb7db3133d9b8fe18739ab53be74905581175fef2e |
File details
Details for the file imops-0.9.0-cp310-cp310-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp310-cp310-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 15.4 MB
- Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7be2ef2fb5b545a6e1105a77c924d477afea8db869e49823425aa2ce1dab532 |
|
MD5 | f172b980bd4ffff166cad1e9c33c1f14 |
|
BLAKE2b-256 | 002a1af5d5256656ddc6fb9b41bd4c1a84bc7b9ca67ea974f979caf084694fc3 |
File details
Details for the file imops-0.9.0-cp310-cp310-musllinux_1_1_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp310-cp310-musllinux_1_1_i686.whl
- Upload date:
- Size: 14.9 MB
- Tags: CPython 3.10, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 36aa63778350fe8a862d1fa135c2c93b5bbfa1ca45f005ceee5bf74ed5a8e5ea |
|
MD5 | 9b74816e1d7de2e6e4667a8ff0caf29f |
|
BLAKE2b-256 | c4f830a9773debc86f1e09d4a09de994cdee38a0f3655ff030abd7c1bfaab322 |
File details
Details for the file imops-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 14.8 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b645baea1cf7517a064e0937ec29521667514c674365ec3cd415027ef3121a6d |
|
MD5 | e8b2be5c9ce8f8f3dfa37d8d4c0b3a4c |
|
BLAKE2b-256 | c5cf3ccc296761d8c0c5fde507ecc5d53d27848b311608f4e05efa9e0908b57b |
File details
Details for the file imops-0.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 14.9 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64116c0b8fbd1b26c772212cec61217aba8ee003fe8c77d78325f962de3d4a90 |
|
MD5 | 9760e8ef89704d801c2cb7ed30dc27ef |
|
BLAKE2b-256 | 50dbd2f0e38c7cbdbea5fb7b579e81a057f21f520fcbd88f114077565fc70753 |
File details
Details for the file imops-0.9.0-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 5.0 MB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d832c76dd3871ea721d013f7b0d1327808d2384783f088280a96a536e8d1070 |
|
MD5 | 769ff87b144cc2523039442b8070fa7e |
|
BLAKE2b-256 | 45b2b90ce59fd0efc724b18bb1e814060dd7232922ea98604511cf6219f2b1e4 |
File details
Details for the file imops-0.9.0-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: imops-0.9.0-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5515e9073d1724e66e19a0862206e9346c7873cb73b3bfd87bb20e9ff8b1db7 |
|
MD5 | c4c23eaafd0464c4f16f32a59d8c17ac |
|
BLAKE2b-256 | b967bc30b552aaa2d17edac77fab282bcc642919fc058d261711dfe8d717501e |
File details
Details for the file imops-0.9.0-cp39-cp39-win32.whl
.
File metadata
- Download URL: imops-0.9.0-cp39-cp39-win32.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ac1a600b355a3647506a05ee4eb41b5b2513f7247fc23e913d6e3e023c6f7ef |
|
MD5 | eca902cfd2d75f2f4803115147464901 |
|
BLAKE2b-256 | 316ce8b9997b72835623a1932b3665acc12de58ec2d578f5f091ca199ac2295b |
File details
Details for the file imops-0.9.0-cp39-cp39-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp39-cp39-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 15.5 MB
- Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 509c85c00c82b41a3a6ab41ba7595c41194453e741c5da5247dd37442d84526b |
|
MD5 | 1777b0f7759ccaa706aaec448d893dc2 |
|
BLAKE2b-256 | 6a4dc5bbe6a5060fad267e18a9cd500b9cf305e09ba89698e3c75e59b1522cff |
File details
Details for the file imops-0.9.0-cp39-cp39-musllinux_1_1_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp39-cp39-musllinux_1_1_i686.whl
- Upload date:
- Size: 14.9 MB
- Tags: CPython 3.9, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f55000904d002e198e61fdbf3e6e74c9abe10a0071de3f79c3919fce1649637 |
|
MD5 | 9d5275182dff50fe7fdaafe54bb4bb23 |
|
BLAKE2b-256 | 5baed86575778665380e197b5f838f316ad45bcfa13a918a614e335eb65be543 |
File details
Details for the file imops-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 14.8 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 901a0de2fa83a1850b9d8a3f07859fcfae267c3856eee97d2857a690d616ffbd |
|
MD5 | f7baf5dd116931d114da2c7be8b07532 |
|
BLAKE2b-256 | 61bab4aa1fee1e86dd2674bc8af23a3650a8e3fb9af70e6ba2924fd61854cf24 |
File details
Details for the file imops-0.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 14.9 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d81d151767bbf5770163143e70116dbee56a3c76007f1dd2dc9fde1411772c3 |
|
MD5 | 8d2c0ef71e08cc2ade0f8912247cb1c5 |
|
BLAKE2b-256 | 0ccd44783b7d3a24a96511894ac062d9dba688b10a57da61d38d6fbde4ad1c07 |
File details
Details for the file imops-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 6.2 MB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f59ffcb9ce6cf41ba6a456ee2a847e9f51c4ffe63708f2e6f6a424d57542d45d |
|
MD5 | 0d0df7ce498b1a70375a7c3c6b7ca2f4 |
|
BLAKE2b-256 | 12c67899eee85a022ca0725bec5dc8f5902364679fb1c771f39c9bd5cc681ce4 |
File details
Details for the file imops-0.9.0-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: imops-0.9.0-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af93220dca3644f56edb0423d7e2a11a4c6386a2ef536a67cd08b2640889b9b5 |
|
MD5 | f56733364c554ab3c5c8af2df59636cf |
|
BLAKE2b-256 | f41394fbb6376bfbfc8b9f8f8e90fb4cbe6562eae81112d4a8b6bba664a1fb1e |
File details
Details for the file imops-0.9.0-cp38-cp38-win32.whl
.
File metadata
- Download URL: imops-0.9.0-cp38-cp38-win32.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.8, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2813cd6b6a21921d914d5a719ad5493390facc29599d5e6616e23894cc537d4d |
|
MD5 | 504b98d18d1c354993606f49a439928b |
|
BLAKE2b-256 | 9cd15dcebda7af880a486cb988380aafce4243533494fa0082768155b3d15f8d |
File details
Details for the file imops-0.9.0-cp38-cp38-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp38-cp38-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 16.2 MB
- Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58d025ceeefd0a6c0b3321bc2787f9c98b56932166af905995dd5cb207ebcbdb |
|
MD5 | 5b6f74c39217b3548329d23b75904603 |
|
BLAKE2b-256 | 5ca5f1200fdd41c334363ff0f5760133df4ddee09051938edc1aafcb24361599 |
File details
Details for the file imops-0.9.0-cp38-cp38-musllinux_1_1_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp38-cp38-musllinux_1_1_i686.whl
- Upload date:
- Size: 15.6 MB
- Tags: CPython 3.8, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d1c34a333f009c0c85fafe336c126d5f89636f7b81f4ae9409805afdffff2c0 |
|
MD5 | 9eb644bc8c7241d9796d5d1cb5740b84 |
|
BLAKE2b-256 | 4fbf39973ae9925dfe60c2697e3d9650de864eb23e810b972f87034f02675fbe |
File details
Details for the file imops-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 15.1 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2119bfa4b5f0e40a12b2d4fccb18294a52c1a326587c9ce8dd99d95ac83474b2 |
|
MD5 | 6fedc0c199b27ae3e5de06eb3a0788a2 |
|
BLAKE2b-256 | d94ffe42f6d0cc934fc9a374f413709ff2679b07200b4ad4a880b46d97164cd5 |
File details
Details for the file imops-0.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 15.1 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63e595dfc936f1b0ac3735ff02ba5751fe26a8f5561bfb00a3000d698ee8d790 |
|
MD5 | ef7fb896fdd69aab0bd9123e3e42de61 |
|
BLAKE2b-256 | 84614c751e21f23885a24967e6fb9a6c30a8ee7c30459b685dfdad169b0841e9 |
File details
Details for the file imops-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 6.2 MB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 136370e29390e0b0ddaf5f9f31a761be8a8c6d8c49b872044c930152ada56636 |
|
MD5 | 5186bb6ae08591c7169010f439241a27 |
|
BLAKE2b-256 | 2a85b79746c233f6e878d853a036238a7a2849c9ab4e105c37ce8c429d3090db |
File details
Details for the file imops-0.9.0-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: imops-0.9.0-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f859a54f39263ab5d7fc4dafc8606bb40a3486e6b7402117f78cb740773e408 |
|
MD5 | af4fed27718bd362169da2c94d8c2ea7 |
|
BLAKE2b-256 | 6227170eef72d2e0ba66eb131b39d5a814abd27e69b9466b7ddcf3cc489ce94f |
File details
Details for the file imops-0.9.0-cp37-cp37m-win32.whl
.
File metadata
- Download URL: imops-0.9.0-cp37-cp37m-win32.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.7m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c369a21e112b756afd60b5266f8d4d52635e44ef64826460b0f804bab506bbc4 |
|
MD5 | fe0aa5ab0dfd86053e94c00e9658333f |
|
BLAKE2b-256 | 4acf3282f6b95a0eafe98f30934c4fcb0bafc2b8d94e3d8d252aebe76e2a9553 |
File details
Details for the file imops-0.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 14.7 MB
- Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe7c92f7171b5375d00dc4856e18adeb6cf182b502f660b8849a6ef413d92d57 |
|
MD5 | c156ea333d914260c3b3b872f88b8f09 |
|
BLAKE2b-256 | 74ebde44de773f6b06bf6a149f3b7b2fc00c294ff6d90d7f550557f8ebabee93 |
File details
Details for the file imops-0.9.0-cp37-cp37m-musllinux_1_1_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp37-cp37m-musllinux_1_1_i686.whl
- Upload date:
- Size: 14.1 MB
- Tags: CPython 3.7m, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0468000880336150553cdd77e7e6d000cb02210dec9ec3246009da01c301e32 |
|
MD5 | 637f3327a07814db52ad29f8fbc3959a |
|
BLAKE2b-256 | 42c4ff8c6334305d59010d9d653eda4665cdc13bfee60450947b0b44baed1e33 |
File details
Details for the file imops-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 14.0 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0db280d5f660bddf5622b0e3c86479649dc7a268e871763202d009c18b4228b5 |
|
MD5 | 4d3fd599b07d6746d9bafce64f9066a6 |
|
BLAKE2b-256 | 9d6fab2954cc447d0e311a3d7abd7070e98b9b19b45f146e8ca223f92bd4fc58 |
File details
Details for the file imops-0.9.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: imops-0.9.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 14.1 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ca4bbefc62c16f28e94491c6ea03a2e9ea44838584bc62e092a3931285576f1 |
|
MD5 | 79668fbe3fcd77f971d0f3a5f4f90201 |
|
BLAKE2b-256 | 925142e324ce8c0d3262dddfeb61cf0fd87a9ff4aec804871af713d75247c85a |
File details
Details for the file imops-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: imops-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 6.1 MB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fff21bd69f7ef23c19d0628a16d6ecb9abaca7e896c511e768cd2e20742ba5ee |
|
MD5 | ce6d6d0fac0133f0454ddbe14b400c8f |
|
BLAKE2b-256 | e1c357207a12da5089c9f1708c2cf3e8e221ff2d021581b1c4e8bfe37be739c4 |