nonparametric impulse response estimation using only input-output data
Project description
impulseest() is a nonparametric impulse response estimation using only input-output data
As the variance increases linearly with the finite impulse response (FIR) model order, it is important for higher order FIR models to counteract this by regularizing the estimative. In impulseest(), this is done as proposed in T. Chen et al [2012] using the Empirical Bayes method (Carlin and Louis [1996]).
The six arguments in this function are:
- u [NumPy array]: input signal (size Nx1);
- y [NumPy array]: output signal (size Nx1);
- n [int]: number of impulse response estimates (default is n=100);
- RegularizationKernel [str]: regularization method ('DC','DI','TC','SS', default is 'none');
- BaseLine [bool]: if True, a base-line model is used to identify most of the impulse response (default is False). Recommended to use in cases where the impulse response decays very slowly;
- MinimizationMethod[str]: bound-constrained optimization method use to minimize the cost function ('Powell','TNC', default is 'L-BFGS-B').
The function returns a NumPy array of size nx1 with all the n impulse response estimates.
Importing impulseest function
from impulseest import impulseest
Example of use of impulseest
ir_est = impulseest(u,y,n=100,RegularizationKernel='DC')
Contributor
Luan Vinícius Fiorio - vfluan@gmail.com
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.