the industrial benchmark as a python package
Project description
Industrial Benchmark
Requires: Java 8 and Apache Maven 3.x or Python 2.7
Documentation: The documentation is available online at: https://arxiv.org/abs/1709.09480
Source: D. Hein, S. Depeweg, M. Tokic, S. Udluft, A. Hentschel, T.A. Runkler, and V. Sterzing. "A benchmark
environment motivated by industrial control problems," in 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), 2017, pp. 1-8.
Citing Industrial Benchmark
To cite Industrial Benchmark, please reference:
D. Hein, S. Depeweg, M. Tokic, S. Udluft, A. Hentschel, T.A. Runkler, and V. Sterzing. "A benchmark environment
motivated by industrial control problems," in 2017 IEEE Symposium Series on Computational Intelligence
(SSCI), 2017, pp. 1-8.
Additional references using Industrial Benchmark:
S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft. "Learning and
policy search in stochastic dynamical systems with Bayesian neural networks." arXiv
preprint arXiv:1605.07127, 2016.
D. Hein, S. Udluft, M. Tokic, A. Hentschel, T.A. Runkler, and V. Sterzing. "Batch reinforcement
learning on the industrial benchmark: First experiences," in 2017 International Joint Conference on Neural
Networks (IJCNN), 2017, pp. 4214–4221.
S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft. "Uncertainty decomposition
in Bayesian neural networks with latent variables." arXiv preprint arXiv:1605.07127, 2017.
D. Hein, A. Hentschel, T. A. Runkler, and S. Udluft. "Particle Swarm Optimization for Model Predictive
Control in Reinforcement Learning Environments," in Y. Shi (Ed.), Critical Developments and Applications
of Swarm Intelligence, IGI Global, Hershey, PA, USA, 2018, pp. 401–427.
S. Depeweg, J. M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. "Decomposition of Uncertainty in Bayesian
Deep Learning for Efficient and Risk-sensitive Learning." 35th International Conference on Machine Learning,
ICML 2018. Vol. 3. 2018.
D. Hein, S. Udluft, and T.A. Runkler. "Interpretable policies for reinforcement learning by genetic programming."
Engineering Applications of Artificial Intelligence, 76, 2018, pp. 158-169.
D. Hein, S. Udluft, and T.A. Runkler. "Generating interpretable fuzzy controllers using particle swarm
optimization and genetic programming," in Proceedings of the Genetic and Evolutionary Computation Conference
Companion, ACM, 2018, pp. 1268-1275.
N. Di Palo, and H. Valpola. "Improving Model-Based Control and Active Exploration with Reconstruction
Uncertainty Optimization." arXiv preprint arXiv:1812.03955, 2018.
F. Linker. "Industrial Benchmark for Fuzzy Particle Swarm Reinforcement Learning."
http://felixlinker.de/doc/ib_fpsrl.pdf, 2019
Additional references mentioning Industrial Benchmark:
Y. Li. "Deep reinforcement learning: An overview." arXiv preprint arXiv:1701.07274, 2017.
D. Ha, and J. Schmidhuber. "Recurrent world models facilitate policy evolution," in Advances
in Neural Information Processing Systems, 2018, pp. 2450-2462.
M. Schaarschmidt, A. Kuhnle, B. Ellis, K. Fricke, F. Gessert, and E. Yoneki. "Lift: Reinforcement learning
in computer systems by learning from demonstrations." arXiv preprint arXiv:1808.07903, 2018.
M. Kaiser, C. Otte, T.A. Runkler, and C.H. Ek. "Data Association with Gaussian Processes." arXiv preprint
arXiv:1810.07158, 2018.
D. Lee, and J. McNair. "Deep reinforcement learning agent for playing 2D shooting games." Int. J. Control Autom,
11, 2018, pp. 193-200.
D. Marino, and M. Manic. "Modeling and planning under uncertainty using deep neural networks." IEEE Transactions
on Industrial Informatics, 2019.
J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. "Datasets for Data-Driven Reinforcement Learning." arXiv
preprint arXiv:2004.07219, 2020.
M. Schaarschmidt. "End-to-end deep reinforcement learning in computer systems." PhD Thesis, University of
Cambridge, 2020.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file industrial_benchmark_python-2.0-py3-none-any.whl
.
File metadata
- Download URL: industrial_benchmark_python-2.0-py3-none-any.whl
- Upload date:
- Size: 26.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f8612f904e01bae2826315d10a777b9c100ff526a6e2ef1aebc94cdc210e2312 |
|
MD5 | 93137882c7b5da51bbc21714aa420b00 |
|
BLAKE2b-256 | 07309bc03981c39a9bcaf5df628b0c0ac45daccb2e71239a54d0fc720dcbc68b |