Skip to main content

the industrial benchmark as a python package

Project description

Industrial Benchmark

Requires: Java 8 and Apache Maven 3.x or Python 2.7

Documentation: The documentation is available online at: https://arxiv.org/abs/1709.09480

Source: D. Hein, S. Depeweg, M. Tokic, S. Udluft, A. Hentschel, T.A. Runkler, and V. Sterzing. "A benchmark 
	environment motivated by industrial control problems," in 2017 IEEE Symposium Series on Computational 
	Intelligence (SSCI), 2017, pp. 1-8. 

Citing Industrial Benchmark

To cite Industrial Benchmark, please reference:

D. Hein, S. Depeweg, M. Tokic, S. Udluft, A. Hentschel, T.A. Runkler, and V. Sterzing. "A benchmark environment 
	motivated by industrial control problems," in 2017 IEEE Symposium Series on Computational Intelligence 
	(SSCI), 2017, pp. 1-8. 

Additional references using Industrial Benchmark:

S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft. "Learning and
	policy search in stochastic dynamical systems with Bayesian neural networks." arXiv
	preprint arXiv:1605.07127, 2016.

D. Hein, S. Udluft, M. Tokic, A. Hentschel, T.A. Runkler, and V. Sterzing. "Batch reinforcement 
	learning on the industrial benchmark: First experiences," in 2017 International Joint Conference on Neural
	Networks (IJCNN), 2017, pp. 4214–4221.

S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft. "Uncertainty decomposition 
	in Bayesian neural networks with latent variables." arXiv preprint arXiv:1605.07127, 2017.

D. Hein, A. Hentschel, T. A. Runkler, and S. Udluft. "Particle Swarm Optimization for Model Predictive 
	Control in Reinforcement Learning Environments," in Y. Shi (Ed.), Critical Developments and Applications 
	of Swarm Intelligence, IGI Global, Hershey, PA, USA, 2018, pp. 401–427.

S. Depeweg, J. M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. "Decomposition of Uncertainty in Bayesian 
	Deep Learning for Efficient and Risk-sensitive Learning." 35th International Conference on Machine Learning, 
	ICML 2018. Vol. 3. 2018.

D. Hein, S. Udluft, and T.A. Runkler. "Interpretable policies for reinforcement learning by genetic programming." 
	Engineering Applications of Artificial Intelligence, 76, 2018, pp. 158-169.

D. Hein, S. Udluft, and T.A. Runkler. "Generating interpretable fuzzy controllers using particle swarm 
	optimization and genetic programming," in Proceedings of the Genetic and Evolutionary Computation Conference 
	Companion, ACM, 2018, pp. 1268-1275.

N. Di Palo, and H. Valpola. "Improving Model-Based Control and Active Exploration with Reconstruction 
	Uncertainty Optimization." arXiv preprint arXiv:1812.03955, 2018.

F. Linker. "Industrial Benchmark for Fuzzy Particle Swarm Reinforcement Learning." 
	http://felixlinker.de/doc/ib_fpsrl.pdf, 2019

Additional references mentioning Industrial Benchmark:

Y. Li. "Deep reinforcement learning: An overview." arXiv preprint arXiv:1701.07274, 2017.

D. Ha, and J. Schmidhuber. "Recurrent world models facilitate policy evolution," in Advances 
	in Neural Information Processing Systems, 2018, pp. 2450-2462.

M. Schaarschmidt, A. Kuhnle, B. Ellis, K. Fricke, F. Gessert, and E. Yoneki. "Lift: Reinforcement learning 
	in computer systems by learning from demonstrations." arXiv preprint arXiv:1808.07903, 2018.

M. Kaiser, C. Otte, T.A. Runkler, and C.H. Ek. "Data Association with Gaussian Processes." arXiv preprint 
	arXiv:1810.07158, 2018.

D. Lee, and J. McNair. "Deep reinforcement learning agent for playing 2D shooting games." Int. J. Control Autom, 
	11, 2018, pp. 193-200.

D. Marino, and M. Manic. "Modeling and planning under uncertainty using deep neural networks." IEEE Transactions 
	on Industrial Informatics, 2019.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. "Datasets for Data-Driven Reinforcement Learning." arXiv 
	preprint arXiv:2004.07219, 2020.

M. Schaarschmidt. "End-to-end deep reinforcement learning in computer systems." PhD Thesis, University of 
	Cambridge, 2020.

Project details


Release history Release notifications | RSS feed

This version

2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file industrial_benchmark_python-2.0-py3-none-any.whl.

File metadata

  • Download URL: industrial_benchmark_python-2.0-py3-none-any.whl
  • Upload date:
  • Size: 26.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.9

File hashes

Hashes for industrial_benchmark_python-2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f8612f904e01bae2826315d10a777b9c100ff526a6e2ef1aebc94cdc210e2312
MD5 93137882c7b5da51bbc21714aa420b00
BLAKE2b-256 07309bc03981c39a9bcaf5df628b0c0ac45daccb2e71239a54d0fc720dcbc68b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page