Skip to main content

Framework of fast implementation data processing and operating pipelines

Project description

PyPI - Python Version PyPI - Version https://img.shields.io/github/license/CubicZebra/informatics CodeFactor GitHub commit activity Read the Docs PyPI - Downloads

informatics

Informatics, sourced from its original meaning: the sciences concerned with gathering, manipulating, storing, retrieving, and classifying recorded information.

It is designed to enable users solve complex problems in science, engineering, and other domains efficiently and accurately. Its powerful capabilities are achieved through a combination of cutting-edge software engineering techniques and the elegance of Python’s functional programming paradigm. The strength of highly modular and extensible architecture allows users to quickly assemble and customize data processing pipelines to satisfy their specific needs. Whether it’s data cleaning, transformation, analysis, or visualization, informatics provides a rich set of tools and functions to facilitate these tasks.

Informatics is built to serve for science as well as engineer domains. It provides ready-made solutions for common tasks like feature engineering, model training, evaluation, deployment, and more. Refer the documentation for a detailed information about its essential designs, functions, as well as applied scopes.

Main Features

Here list a few of things that informatics featured:

  • Powerful integration capability for various utilities (e.g. functions, frames, packages, and etc.) in Python ecosystem.

  • Universal processing interface designed in high dimensionality to guarantee consistency of calling for different types of data.

  • Scripting on basis of functional programming paradigm, with properties of robust performance, and easy decoupling for extension.

  • Intuitive combination of data processing units, for fast experiments, validation, or building for upper applications.

  • Documentation in details for not only basic functions, but the tutorials, interpretation for essential concepts, examples of applications, and such like.

License

Apache License v2.0

Getting Help

For usage questions about functions, API reference and example code snippet on documentation would be helpful. While for other issues and suggestions, post your advice here or mail the author.


Authors:

Chen Zhang

Version:

0.0.4

Created on:

Mar 12, 2024

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

informatics-0.0.5rc0-cp312-cp312-win_amd64.whl (730.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

informatics-0.0.5rc0-cp312-cp312-manylinux_2_17_x86_64.whl (931.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

informatics-0.0.5rc0-cp312-cp312-macosx_10_9_x86_64.whl (808.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

informatics-0.0.5rc0-cp311-cp311-win_amd64.whl (758.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

informatics-0.0.5rc0-cp311-cp311-manylinux_2_17_x86_64.whl (944.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

informatics-0.0.5rc0-cp311-cp311-macosx_10_9_x86_64.whl (823.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

informatics-0.0.5rc0-cp310-cp310-win_amd64.whl (757.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

informatics-0.0.5rc0-cp310-cp310-manylinux_2_17_x86_64.whl (944.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

informatics-0.0.5rc0-cp310-cp310-macosx_10_9_x86_64.whl (821.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

informatics-0.0.5rc0-cp39-cp39-win_amd64.whl (758.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

informatics-0.0.5rc0-cp39-cp39-manylinux_2_17_x86_64.whl (946.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

informatics-0.0.5rc0-cp39-cp39-macosx_10_9_x86_64.whl (821.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file informatics-0.0.5rc0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0721fd85bba8f79cd7f64d5759bbe21b2b60f57f335200e2325a5d6ca32db696
MD5 e5a3ab0caf2f33ea8c6f63270d19c37a
BLAKE2b-256 72722a9a92098233adcd103f5313cb360f1c7b779d6a1a5f87bb13dec5a40de4

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e99ae84d2bf7e4bcbd6a5ed812a212576750826513d8b62675e897aecd7e46df
MD5 a145980e85dc580695f5c74748261646
BLAKE2b-256 f47148f15e1b974aa234e6ae95deb7e256efe216fc894d7a8a16eb3b17bcf48a

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 44b5abe97c8e2aaedfb0c7140531f85835b47f62932385db9ce20c3c37e2d203
MD5 39627097d2458a20d628d4a6767fdc6d
BLAKE2b-256 4ec5fa412525352320ee3833d2f54fe95d0280aea0933f0248c2c20a71631952

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4631b806391257e0b6de38e62d899283228f3d749b10e7a0732f9239e75d1ca4
MD5 46ddf3b1330aeccb8b5cf4e734e80cb4
BLAKE2b-256 8ddcfe4bee549aeeab7e51e911f56d67fb638595e97993ed0d41f56e97ab1179

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 05cda90037071b9c24e3b7d4e8eb3f68701f8029242d1e8abf1e48bf1a19d9ee
MD5 9eda8f2ebb0fdb8c715b2d8d2420dd53
BLAKE2b-256 8fe09a3c6b93b5a0f936bc039e0b95849f39f444e1b3b3596dcb344a6893157e

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 62df0b5e71052fa787287b3d74055d55487619dcef36b0588f62d1312fe32cb4
MD5 67532b9afd57e7fd2f7ad9cbd3685ea7
BLAKE2b-256 d8b83fff4e320b8a235d76d46789eb3ce66f7d17f37c460725b5f101696607fc

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6c5696841593c78c94cb142001980acf272577b9cc721037d4c1be91e735e6bb
MD5 4569c028e810dfa2c5ed31882a74d9ba
BLAKE2b-256 e5f27cfcc4349e87fd8e0f376772eb2627030e4d6c4d2067c5706270deeb6d17

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ccd4d39d5b4b8ab880af6690b239497a25aae190c591aad83ca7623d151b6efe
MD5 4786b8987ff90d0ca1ce7d55b5d8f34c
BLAKE2b-256 ab6143512a9f9813058dfeed2ce5b9e63250ad6d257ee246fa5ee1b41531a25d

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3553f29b6b7e3c797daef8c837c7621835fe18f9d6fc9ee4a8105472938bd71c
MD5 cb7d38508a6f61637daf3efae7fcbc51
BLAKE2b-256 7a813af1a549397a84c551a393cfd63cd8ebe96e66c7194a8df1290bf85b80e4

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c18693306756801ec4637080b88477451e99dec7a80db19c9080bc84bef43f8a
MD5 7cfd4ecf2b06309a19c7f4bc853340da
BLAKE2b-256 ceec6abe2948563b9a8beb2c3e95edfc0d9ee2047aa3771d7457f081a0e67fa4

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 9ddf17c8fe77222f229d8c16085c28441a25ff62e305b376a21309f9e0bb1b42
MD5 39be46e1ed44ef5de67eea72d77e0b92
BLAKE2b-256 f4d4e4f9b5f9aac363f4d843c4762720c9e664e43aef8d4f681ddbafd0a6dec0

See more details on using hashes here.

File details

Details for the file informatics-0.0.5rc0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for informatics-0.0.5rc0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c91ffa1f31d13bf6d010177ced6ae4394d6a61d81152ac15cae4fce1101e15a1
MD5 2d7dc9c9b4a39983cde7ade8d62527eb
BLAKE2b-256 8690b5f954d2b2280eae67287ee067bdb5188059e850f4acd24e094280868550

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page