Skip to main content

An insanely fast whisper CLI

Project description

Insanely Fast Whisper

Powered by 🤗 Transformers, Optimum & flash-attn

TL;DR - Transcribe 300 minutes (5 hours) of audio in less than 98 seconds - with OpenAI's Whisper Large v3. Blazingly fast transcription is now a reality!⚡️

Not convinced? Here are some benchmarks we ran on a free Google Colab T4 GPU! 👇

Optimisation type Time to Transcribe (150 mins of Audio)
Transformers (fp32) ~31 (31 min 1 sec)
Transformers (fp16 + batching [24] + bettertransformer) ~5 (5 min 2 sec)
Transformers (fp16 + batching [24] + Flash Attention 2) ~2 (1 min 38 sec)
distil-whisper (fp16 + batching [24] + bettertransformer) ~3 (3 min 16 sec)
distil-whisper (fp16 + batching [24] + Flash Attention 2) ~1 (1 min 18 sec)
Faster Whisper (fp16 + beam_size [1]) ~9.23 (9 min 23 sec)
Faster Whisper (8-bit + beam_size [1]) ~8 (8 min 15 sec)

🆕 Blazingly fast transcriptions via your terminal! ⚡️

We've added a CLI to enable fast transcriptions. Here's how you can use it:

Install insanely-fast-whisper with pipx:

pipx install insanely-fast-whisper

Run inference from any path on your computer:

insanely-fast-whisper --file-name <filename or URL>

🔥 You can run Whisper-large-v3 w/ Flash Attention 2 from this CLI too:

insanely-fast-whisper --file-name <filename or URL> --flash True 

🌟 You can run distil-whisper directly from this CLI too:

insanely-fast-whisper --model-name distil-whisper/large-v2 --file-name <filename or URL> 

Don't want to install insanely-fast-whisper? Just use pipx run:

pipx run insanely-fast-whisper --file-name <filename or URL>

Note: The CLI is opinionated and currently only works for Nvidia GPUs. Make sure to check out the defaults and the list of options you can play around with to maximise your transcription throughput. Run insanely-fast-whisper --help or pipx run insanely-fast-whisper --help to get all the CLI arguments and defaults.

How to use it without a CLI?

For older GPUs, all you need to run is:

import torch
from transformers import pipeline

pipe = pipeline("automatic-speech-recognition",
                "openai/whisper-large-v2",
                torch_dtype=torch.float16,
                device="cuda:0")

pipe.model = pipe.model.to_bettertransformer()

outputs = pipe("<FILE_NAME>",
               chunk_length_s=30,
               batch_size=24,
               return_timestamps=True)

outputs["text"]

For newer (A10, A100, H100s), use Flash Attention:

import torch
from transformers import pipeline

pipe = pipeline("automatic-speech-recognition",
                "openai/whisper-large-v2",
                torch_dtype=torch.float16,
                model_kwargs={"use_flash_attention_2": True},
                device="cuda:0")

outputs = pipe("<FILE_NAME>",
               chunk_length_s=30,
               batch_size=24,
               return_timestamps=True)

outputs["text"]                

Roadmap

  • Add a light CLI script
  • Deployment script with Inference API

Community showcase

@ochen1 created a brilliant MVP for a CLI here: https://github.com/ochen1/insanely-fast-whisper-cli (Try it out now!)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

insanely_fast_whisper-0.0.5b1.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

insanely_fast_whisper-0.0.5b1-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file insanely_fast_whisper-0.0.5b1.tar.gz.

File metadata

File hashes

Hashes for insanely_fast_whisper-0.0.5b1.tar.gz
Algorithm Hash digest
SHA256 14e29f4b27706001ce9f7b926b95cd1186b5298576b09e4c126f777145f7bbd9
MD5 47f31eb89894dd61dc89a6bf21c495d6
BLAKE2b-256 3a6752a4175afc09d62c6415df24a7804365dbb4874117e1c01b3c3f5e021457

See more details on using hashes here.

File details

Details for the file insanely_fast_whisper-0.0.5b1-py3-none-any.whl.

File metadata

File hashes

Hashes for insanely_fast_whisper-0.0.5b1-py3-none-any.whl
Algorithm Hash digest
SHA256 3934f011cd2c12cd8cb9f13bff8c27cd422a4979833d55ea0eac6e518689aad3
MD5 50772c177741a8bbe68f24b3dc52607e
BLAKE2b-256 93fcedc545182b51d6b4e9a184fd486e1705b55cd464cd529153524460ebde6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page